

Lecture Notes in Computer Science 4037
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Roberto Gorrieri Heike Wehrheim (Eds.)

Formal Methods
for Open Object-Based
Distributed Systems

8th IFIP WG 6.1 International Conference, FMOODS 2006
Bologna, Italy, June 14-16, 2006
Proceedings

13

Volume Editors

Roberto Gorrieri
Università di Bologna
Dipartimento di Scienze dell’Informazione
Mura A. Zamboni, 7, 40127 Bologna, Italy
E-mail: gorrieri@cs.unibo.it

Heike Wehrheim
Universität Paderborn
Institut für Informatik
Warburger Str. 100, 33098 Paderborn, Germany
E-mail: wehrheim@uni-paderborn.de

Library of Congress Control Number: 2006926884

CR Subject Classification (1998): C.2.4, D.1.3, D.2, D.3, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34893-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34893-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11768869 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 8th IFIP International Confer-
ence on Formal Methods for Open Object-based Distributed Systems (FMOODS
2006). The conference was held in Bologna, Italy, 14-16 June 2006, as part of
the federated multiconference DisCoTec (Distributed Computing Techniques),
together with the 8th International Conference on Coordination Models and
Languages (COORDINATION) and the 6th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS). DisCoTec was
organized by the Department of Computer Science of the University of Bologna.

Established in 1996, the FMOODS series of conferences aims to provide an
integrated forum for research on formal aspects of open object-based distributed
systems. The FMOODS 2006 especially attracted novel contributions reflecting
recent developments in the area, such as component- and model-based design,
service-oriented computing, and software quality. Some more specific topics of
interest were: semantics and implementation of object-oriented programming
and (visual) modelling languages; formal techniques for specification, design,
analysis, verification, validation and testing; formal methods for service-oriented
computing; and integration of quality of service requirements into formal models.

These proceedings contain a selection of 16 research contributions, out of
51 submissions, which went through a rigorous review process by international
reviewers. We therefore owe special thanks to all members of the Program Com-
mittee, and their sub-referees, for the excellent work they have done in the short
time they had.

Additionally, these proceedings include three invited papers by Pierpaolo
Degano (University of Pisa), José Luiz Fiadeiro (University of Leicester) and
Davide Sangiorgi (University of Bologna).

Finally, our thanks go to the Organizing Committee of the DisCoTec fed-
erated conference, chaired by Gianluigi Zavattaro, for the excellent work done
and for the support they gave in managing the submission system by Philippe
Rigaux. We also gratefully acknowledge the financial support of the Department
of Computer Science of the University of Bologna and from the EU-project
SENSORIA.

June 2006 Roberto Gorrieri
Heike Wehrheim

Organization

General Chair Gianluigi Zavattaro (University of Bologna, Italy)
Program Chairs Roberto Gorrieri (University of Bologna, Italy)

Heike Wehrheim (University of Paderborn, Germany)
Publicity Chair Martin Steffen (University of Kiel, Germany)

Steering Committee

John Derrick (University of Sheffield, UK)
Roberto Gorrieri (University of Bologna, Italy)
Elie Najm (ENST, Paris, France)

Program Committee

Lynne Blair (U. of Lancaster, UK)
Eerke Boiten (U. of Kent, UK)
Nadia Busi (U. of Bologna, Italy)
John Derrick (U. of Sheffield, UK)
Alessandro Fantechi (U. of Florence, Italy)
Colin Fidge (U. of Queensland, Australia)
Robert France (Colorado State U., USA)
Roberto Gorrieri (U. of Bologna, Italy)
Reiko Heckel (U. of Leicester, UK)
Einar Broch Johnsen (U. of Oslo, Norway)
Doug Lea (State U. of New York, USA)
Elie Najm (ENST Paris, France)
Uwe Nestmann (TU Berlin, Germany)
Erik Poll (U. of Nijmegen, Netherlands)
Arend Rensink (U. Twente, Netherlands)
Ralf Reussner (U. of Karlsruhe, Germany)
Bernhard Rumpe (TU Braunschweig, Germany)
Martin Steffen (U. of Kiel, Germany)
Carolyn Talcott (SRI International, USA)
Andrzej Tarlecki (Warsaw University, Poland)
Vasco Vasconcelos (U. of Lisbon, Portugal)
Heike Wehrheim (U. of Paderborn, Germany)
Elena Zucca (U. of Genova, Italy)

VIII Organization

Organizing Committee

Claudio Guidi
Ivan Lanese
Roberto Lucchi
Luca Padovani
Elisa Turrini
Stefano Zacchiroli

Referees

Davide Ancona
Michele Banci
Laura Bocchi
Edoardo Bonta
Mario Bravetti
Manuel Breschi
Barbara Catania
Walter Cazzola
Antonio Cerone
Giorgio Delzanno
Piergiorgio Di Giacomo
Luca Durante
Karsten Ehrig
Harald Fecher
Maurizio Gabbrielli
Geri Georg
Hans Grönniger
Andreas Gruener
Christian Haack
Jan Hendrik Hausmann
Marcel Kyas
Giovanni Lagorio

Grzegorz Marczyński
Francisco Martins
Viviana Mascardi
Peter lveczky
Wies�law Paw�lowski
Holger Rasch
Antonio Ravara
Dirk Reiß
Paolo Rosso
Murat Sahingöz
Luigi Sassoli
Martin Schindler
Gerardo Schneider
Aleksy Schubert
Graeme Smith
Mark Stein
Gabriele Taentzer
Simone Tini
Hugo Vieira
Steven Voelkel
Gianluigi Zavattaro
Artur Zaw�locki

Table of Contents

I Invited Speakers

Security Issues in Service Composition
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari 1

Separating Distribution from Coordination and Computation
as Architectural Dimensions

José Luiz Fiadeiro . 17

The Bisimulation Proof Method: Enhancements and Open Problems
Davide Sangiorgi . 18

II Regular Papers

An Approach to Quality Achievement at the Architectural
Level: AQUA

Heeseok Choi, Keunhyuk Yeom, Youhee Choi,
Mikyeong Moon . 20

Bounded Analysis and Decomposition for Behavioural Descriptions
of Components

Pascal Poizat, Jean-Claude Royer, Gwen Salaün 33

Modeling and Validation of a Software Architecture for the Ariane-5
Launcher

Iulian Ober, Susanne Graf, David Lesens . 48

Synchronizing Behavioural Mismatch in Software Composition
Carlos Canal, Pascal Poizat, Gwen Salaün . 63

Static Safety for an Actor Dedicated Process Calculus by Abstract
Interpretation

Pierre-Löıc Garoche, Marc Pantel, Xavier Thirioux 78

Temporal Superimposition of Aspects for Dynamic Software
Architecture

Carlos E. Cuesta, Maŕıa del Pilar Romay, Pablo de la Fuente,
Manuel Barrio-Solórzano . 93

X Table of Contents

Modeling Long–Running Transactions with Communicating
Hierarchical Timed Automata

Ruggero Lanotte, Andrea Maggiolo-Schettini, Paolo Milazzo,
Angelo Troina . 108

Transformation Laws for UML-RT
Rodrigo Ramos, Augusto Sampaio, Alexandre Mota 123

Underspecification, Inherent Nondeterminism and Probability in
Sequence Diagrams

Atle Refsdal, Ragnhild Kobro Runde, Ketil Stølen 138

Generating Instance Models from Meta Models
Karsten Ehrig, Jochen M. Küster, Gabriele Taentzer,
Jessica Winkelmann . 156

KM3: A DSL for Metamodel Specification
Frédéric Jouault, Jean Bézivin . 171

Defining Object-Oriented Execution Semantics Using Graph
Transformations

Harmen Kastenberg, Anneke Kleppe, Arend Rensink 186

Type-Safe Runtime Class Upgrades in Creol
Ingrid Chieh Yu, Einar Broch Johnsen, Olaf Owe 202

Abstract Interface Behavior of Object-Oriented Languages with
Monitors

Erika Ábrahám, Andreas Grüner, Martin Steffen 218

Mobility Mechanisms in Service Oriented Computing
Claudio Guidi, Roberto Lucchi . 233

Theoretical Foundations of Scope-Based Compensable Flow Language
for Web Service

Geguang Pu, Huibiao Zhu, Zongyan Qiu, Shuling Wang,
Xiangpeng Zhao, Jifeng He . 251

Author Index . 267

Security Issues in Service Composition

Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy
{bartolet, degano, giangi}@di.unipi.it

Abstract. We use a distributed, enriched λ-calculus for describing net-
works of services. Both services and their clients can protect themselves,
by imposing security constraints on each other’s behaviour. Then, ser-
vice interaction results in a call-by-property mechanism, that matches
the client requests with service’s. A static approach is also described,
that determines how to compose services while guaranteeing that their
execution is always secure, without resorting to any dynamic check.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm to design distributed
applications [31, 30, 19]. In this paradigm, applications are built by assembling
together independent computational units, called services. A service is a stand-
alone component distributed over a network, and made available through stan-
dard interaction mechanisms. An important aspect is that services are open, in
that they are built with little or no knowledge about their operating environ-
ment, their clients, and further services therein invoked. Composition of ser-
vices may require peculiar mechanisms to handle complex interaction patterns
(e.g. to implement transactions), while enforcing non-functional requirements
on the system behaviour (e.g. security and service level agreement). Web Ser-
vices [3, 34, 38] built upon XML technologies are possibly the most illustrative
and well developed example of the SOC paradigm. Indeed, a variety of XML-
based technologies already exists for describing, discovering and invoking web
services [18, 14, 5, 39]. There are also several standards for defining and enforcing
non-functional requirements of services, e.g. WS-Security [6], WS-Trust [4] and
WS-Policy [15] among the others.

1.1 Security and Service Composition

The orchestration of services consists of their composition and coordination.
Languages for that have been recently proposed, e.g. BPEL4WS [5, 25]. Service
composition heavily depends on which information about a service is made pub-
lic, on how to choose those services that match the user’s requirements, and
on their actual run-time behaviour. Security makes service composition even
harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee the delivered ser-
vice to respect a given security policy, in any interaction with the operational

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 1–16, 2006.
c© IFIP International Federation for Information Processing 2006

2 M. Bartoletti, P. Degano, and G.L. Ferrari

environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensible data from the services invoked.

A typical approach consists in endowing the network infrastructure with au-
thentication mechanisms, so to certify the identity of services. However, security
may be breached even by trusted services, either because of unintentional be-
haviour (e.g. bugs), or because the composition of the client and the services
exhibits some behaviour unwanted by the client (e.g. leakage of information).

We have addressed the problem of security in a linguistic framework. In our
approach, clients may protect from their callers by wrapping security-critical por-
tions of their own code into safety framings. These framings enforce the given
security policy on the execution of the wrapped piece of code, aborting it when-
ever about to violate the policy, thus offering additional flexibility with respect
to monolithic global policies, and relieving the programmer of guarding each use
of security-critical resources.

On their side, callers may constrain the behaviour of the called services, by
supplying a security policy at the moment of invocation. We push further this
invocation mechanism, by allowing callers to request services that not only do
obey the imposed security constraints, but that also respect a given contract on
their functional behaviour. The implementation of this so-called call-by-property
invocation mechanism requires that services are published together with a cer-
tified abstraction of their behaviour.

1.2 The Planning Problem

Call-by-property invocation and safety framings make service composition se-
cure. A plan orchestrates the execution of a service-based application, by asso-
ciating the sequence of run-time service requests with a corresponding sequence
of selected services. A major problem is still left open: how to construct a plan
that guarantees no executions will abort because of some action attempting to
violate security.

Determining such a viable plan amounts to selecting from the network those
services that accomplish the requested task, while respecting the security con-
straints on demand. Those services that locally obey the property imposed by
a request are not always good candidates, because their behaviour may affect
security of the whole composition. For example, consider a device with a limited
computational power. Suppose it downloads an applet from the network, and
then delegates a remote service to run it. Although the contract between the
device and the code provider is fulfilled, the applet may violate a security policy
imposed by the executer. To determine the viable plans, one has to check the
effects of all the available applets against the security policies of all the remote
executers.

As a matter of fact, there might be several different kinds of plans, each with
a different expressive power. Among them, one may consider plans that attach
a selection of services to each program point representing a service request. The
expressive power varies according to the nature of the information associated
with each request. Simple plans associate a single service with each request,

Security Issues in Service Composition 3

multi-choice plans map requests into sets of services, and dependent plans also
convey the dependence of a service selection with the choices made in the past (a
sort of continuation-passing plan). These kinds of plans have been studied in [9].
Dependent multi-choice plans are a mix of the last two kinds. Further expressive
power is gained when relaxing the assumption of associating service selections to
the program points where requests are made. Regular plans drive the execution
of a program, by providing it with the possible patterns of service selections, in
the form of a regular expression. Dynamic plans can be updated at run-time,
according to the evaluation of some conditions on the program execution (e.g.
boolean guards in conditionals, number of iterations in a loop, etc.).

1.3 A Static Approach to Secure Service Composition

We have proposed a solution to the planning problem, within a distributed frame-
work [10]. Services are functional units in an enriched λ-calculus, they are ex-
plicitly located at network sites, and they have a published public interface.
Unlike standard syntactic signatures, this interface includes an abstraction of
the service behaviour, in the form of annotated types. To obtain a service with a
specific behaviour, a client queries the network for a published interface match-
ing the requirements. Security is implemented by wrapping the critical blocks
of code inside safety framings (with local scopes, possibly nested), that enforce
the relevant policies during the execution of the block. In the spirit of history-
based security [1], a security policy can inspect the whole execution history at
a given site. Since our framework is fully distributed, our policies cannot span
over multiple sites.

We have introduced a type and effect system for our calculus [21, 28, 35]. The
type of a service describes its functional behaviour, while the effect is a history
expression, representing those histories of events relevant to security. History
expressions extend regular expressions with information about the selection of
services, coupled with their corresponding effect.

We have then devised a way of extracting from a history expression all the
viable plans, i.e. those that successfully drive secure executions. This is a two-
stage construction. A first transformation of history expressions makes them
model-checkable for validity [7]. Valid history expressions guarantee that the
services they come from never go wrong at run-time. From valid histories it is
then immediate to obtain the viable plans, that make any execution monitor
unneeded.

1.4 Trusted Orchestration

Our planning technique acts as a trusted orchestrator of services. It provides
a client with the plans guaranteeing that the invoked services always respect
the required properties. Thus, in our framework the only trusted entity is the
orchestrator, and neither clients nor services need to be such. In particular, the
orchestrator infers functional and behavioural types of each service. Also, it is
responsible for certifying the service code, for publishing its interface, and for

4 M. Bartoletti, P. Degano, and G.L. Ferrari

guaranteeing that services will not arbitrarily change their code on the fly: when
this happens, services need to be certified again.

When an application is injected in the network, the orchestrator provides it
with a viable plan (if any), constructed by composing and analysing the certified
interfaces of the available services. The trustworthiness of the orchestrator relies
upon formal grounds. We proved the soundness of our type and effect system,
and the correctness of the static analysis and model-checking technique that
infers viable plans.

The orchestrator constructs the plans for a client, by considering the view of
the network at the moment the application is injected. To be more dynamic, one
would like to manage the discovering of new services, as well as the case when
existing ones are no longer available.

Both these problems require a special treatment. Multi-choice plans are a first
solution to deal with disappearing services, because they offer many choices for
the same request. Publication of new services poses instead a major problem.
To cope with that, one has to reconfigure plans at run-time, by exploiting the
new interfaces. However, incrementally checking viability of plans is an open
problem. A possible solution is to enrich history expressions with hooks where
new services can be attached. The orchestrator then needs to check the validity
of the newly discovered plans, hopefully in an incremental manner.

1.5 Related Work

The secure composition of components underlies the design of Sewell and Vitek’s
box-π [33], an extension of the π-calculus that allows for expressing safety poli-
cies in the form of security wrappers. These are programs that encapsulate a
component to control the interactions with other (possibly untrusted) compo-
nents. A type system that statically captures the allowed causal information
flows between components. Our safety framings are closely related to wrappers.

Gorla, Hennessy and Sassone [23] consider a calculus for agents which may
migrate between sites in a controlled manner. Each site has a membrane, repre-
senting both a security policy and a classification of the levels of trust of external
sites. A membrane guards the incoming agents before allowing them to execute.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing efficient static verification of
properties of composed systems. Session types [24] have been exploited to for-
malize compatibility of components [37] and to describe adaptation of web ser-
vices [16]. Security issues have been recently considered in terms of session types,
e.g. in [13], which proves the decidability of type-checking in an extension of the
π-calculus with session types and correspondence assertions [40].

Other works have proposed type-based methodologies to check security prop-
erties of distributed systems. For instance, Gordon and Jeffrey [22] use a type
and effect system to prove authenticity properties of security protocols. Web ser-
vice authentication has been recently modelled and analysed in [11, 12] through
a process calculus enriched with cryptographic primitives.

Security Issues in Service Composition 5

The problem of discovering and composing Web Services by taking advan-
tage of semantic information has been the subject of a considerable amount of
research and development, [2, 17, 27, 29, 32, 36] to cite a few. The idea is to ex-
tend the primitives of service description languages with basic constructs for
specifying properties of the published interface. We can distinguish between
semantic-web descriptions [2, 29, 32, 36] in which service interfaces are annotated
with parameter ontologies, and behavioural description [17, 27] in which the an-
notation details the ordering of service actions. A different solution to planning
service composition has been proposed in [26], where the problem of composing
services in order to achieve a given goal is expressed as a constraint satisfaction
problem. Our approach extends and complements those based on behavioral de-
scriptions, with an eye to security. Indeed, our methodology fully automates the
process of discovering services and planning their composition in a secure way.

2 Planning Secure Service Compositions

To illustrate our approach, consider the scenario in the figure below. The boxes
model services, distributed over a network. Each box encloses the service code,
and is decorated with the location �i where the service is published.

Assume that the client at site �0 is a device with limited computational ca-
pabilities, wanting to execute some code downloaded from the network. To do
that, the client issues two requests in sequence. The request labelled r1 asks for a
piece of mobile code (e.g. an applet), and it can be served by two code providers
at �1 and �2. The request type τ −→ (τ −→ τ) means that, upon receiving a value
of type τ (which can be an arbitrary base type, immaterial here) the invoked
service replies with a function from τ to τ , with no security constraints.

αc; · · ·ϕ′[f()] · · ·

λx. ϕ[αr; · · ·]

λx. αr; · · · ;αw

· · · f() · · ·

�0 �1

�2

�3

�4

f = reqr1
τ −→ (τ −→ τ)

(reqr2
(τ −→ τ) −→ τ) f

Fig. 1. One client (�0), two code providers (�1, �2), and two code executers (�3, �4)

6 M. Bartoletti, P. Degano, and G.L. Ferrari

The service at �1 returns a function that protects itself with a policy ϕ,
permitting its use in certified sites only (modelled by the event αc). Within the
function body, the only security-relevant operation is a read αr on the file system
where the delivered code is run. The code provided by �2 first reads (αr) some
local data, and eventually writes them (αw) back to �2.

Since �0 has a limited computational power, the code f obtained by the request
r1 is passed as a parameter to the service invoked by the request r2. This request
can be served by �3 and �4. The service at �3 is certified (αc), and runs the
provided code f under a “Chinese Wall” security policy ϕ′, requiring that no
data can be written (αw) after reading them (αr). The service at �4 is not
certified, and it simply runs f .

2.1 Programming Model

Clients and services are modelled as expressions in a λ-calculus enriched with
primitives for security and service requests. Security-relevant operations are ren-
dered as side-effects in the calculus, and they are called access events (e.g.
αc, αr, αw). A security policy is a regular property over a sequence η of access
events, namely a history. A piece of code e framed within a policy ϕ (written
ϕ[e]) must respect ϕ at each step of its execution. A service request has the
form reqrρ. The label r uniquely identifies the request, while the request type
ρ is the query pattern to be matched by the invoked service. For instance, the

request type τ
ϕ[•]−−→ τ ′ matches services with functional type τ −→ τ ′, and whose

behaviour respects the policy ϕ. The abstract syntax of services follows.

Syntax of Services

e, e′ ::= x variable
α access event
if b then e else e conditional
λzx. e named abstraction
e e′ application
ϕ[e] safety framing
reqrρ service request
wait � wait reply

The stand-alone evaluation of a service is much alike the call-by-value se-
mantics of the λ-calculus; additionally, it enforces all the policies within their
framings. More precisely, assume that, starting from the current history η, an
expression e may evolve to e′ and extend the history to η′. Then, a framing
ϕ[e] may evolve to ϕ[e′] if η′ satisfies ϕ — otherwise the evaluation gets stuck.
Eventually, values leave the scope of framings.

When a service is plugged into a network, a plan is used to resolve the requests
therein, acting as an orchestrator. For brevity, we consider here only the case of
simple plans, that have the following syntax:

Security Issues in Service Composition 7

Syntax of Simple Plans

π, π′ ::= 0 | r[�] | π | π′

The empty plan 0 has no choices. The plan r[�] associates the service e published
at site � with the request labelled r. The composition operator | is associative,
commutative and idempotent, with identity 0. We require plans to have a single
choice for each request, i.e. r[�] | r[�′] implies � = �′.

A service e is plugged into a network by publishing it at a site �, together
with its interface τ . Hereafter, �〈e : τ〉 denotes such a published service. We
assume that each site publishes a single service, and that interfaces are certified,
e.g. they are inferred by the type system in [10]. Also, we assume that services
cannot invoke each other circularly, because this would make little sense. A
network is a set of clients and published services.

The state of a published service �〈e : τ〉 is denoted by �〈e : τ〉 : η, e′ —
abbreviated as � : η, e′ when unambiguous. The component η is the history
generated so far at site �, and e′ models the code in execution. We assume
here that services are stateless, i.e. the history of a service is cleared at each
instantiation. A network configuration has the form �1 : η1, e

′
1 ‖ · · · ‖ �k : ηk, e

′
k.

A request r, resolved by the current plan with the service �′, can be served
if the service �′ is available (written �′ :
). In this case, a new instance of
the service is generated: the service code (a function) is applied to the received
argument. The invoker waits until �′ has produced a value. When this happens,
the value is returned to the invoker, and the service becomes available again.

Back to our example, consider the plan π = r1[�2] | r2[�3]. Then, π drives the
following computation (for brevity, we omit the types in requests):

�0 : ε, (λf. reqr2
f) reqr1

‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, (λf. reqr2
f) wait �2 ‖ �1 :
 ‖ �2 : ε, λx. αr ; · · · ;αw ‖ �3 :
 ‖ �4 :

→π �0 : ε, (λf. reqr2
f) (λx. αr; · · · ;αw) ‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, reqr2
(λx. αr ; · · · ;αw) ‖ �1 :
 ‖ �2 :
 ‖ �3 :
 ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : ε, αc; · · · ;ϕ′[(λx. αr ; · · · ;αw)()] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αc, ϕ

′[(λx. αr ; · · · ;αw)()] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αc, ϕ

′[αr; · · · ;αw] ‖ �4 :

→π �0 : ε, wait �3 ‖ �1 :
 ‖ �2 :
 ‖ �3 : αcαr, ϕ

′[αw] ‖ �4 :

The computation at site �3 is now aborted, because the history αcαrαw would
otherwise violate the Chinese-Wall policy ϕ′. We have then discovered that the
plan r1[�2] | r2[�3] is not viable. As we will see in a while, our static machinery
infers that also the plan r1[�1] | r2[�4] is not viable (it violates the policy ϕ).
There are two further plans to consider: r1[�1] | r2[�3] and r1[�2] | r2[�4]. These
plans will be shown viable by our static analysis, and they will drive secure
executions that never abort.

8 M. Bartoletti, P. Degano, and G.L. Ferrari

2.2 Types and Effects

We stipulated that the services published in the network have certified interfaces.
To do that, in [10] we have defined a type and effect system, that will also be
used to infer an over-approximation of client behaviour.

Types τ, τ ′ are either base types, or they have the form τ
H−→ τ ′. The an-

notation H over the arrow is a history expression. It describes the latent effect
associated with the function: one of the histories represented by H is generated
when a value is applied to a function with that type. History expressions have
the following abstract syntax:

Syntax of History Expressions

H,H ′ ::= ε empty
h variable
α access event
H ·H ′ sequence
H + H ′ choice
ϕ[H] safety framing
μh.H recursion
� : H localization
{πi � Hi}i∈I planned selection

Access events represent the program actions where sensible resources are ac-
cessed; the constructors · and + correspond to sequentialization of code and
conditionals, respectively; safety framings model blocks of code subject to secu-
rity policies; recursion is for loops and recursive functions. The construct � : H
localizes the behaviour H to the site �. E.g., � : α · (�′ : α′) · β denotes two
histories: αβ occurring at location �, and α′ occurring at �′. A planned selec-
tion abstracts the behaviour of service requests. E.g., {r[�1] �H1 · · · r[�k] �Hk}
says that a request r can be resolved into one of the services provided by
the sites �1, . . . , �k, which may generate a history represented by H1, . . . , Hk,
respectively.

A typing judgment Γ,H �� e : τ means that the service e at site � evaluates
to a value of type τ , and produces a history denoted by the effect H . Typing
judgments are similar to those of the simply-typed λ-calculus. To give the flavour
of how the effects are inferred, consider first the rule to type applications:

Γ,H �� e : τ H′′
−−→ τ ′ Γ,H ′ �� e

′ : τ

Γ,H ·H ′ ·H ′′ �� e e
′ : τ ′

The rule says that e is an expression whose evaluation will generate a history in
H . It will reduce to a value which is a function (from τ to τ ′) with latent effect
H ′′. The evaluation of the argument e′ with type τ will generate a history in H ′.
The overall effect of e applied to e′ is H ·H ′ ·H ′′, thus respecting the evaluation
order of the call-by-value semantics (function, argument, latent effect).

Security Issues in Service Composition 9

To give a type to service requests, some auxiliary technical notation is needed:
the interested reader can find all the definitions in [7]. Just to give the intuition,
the typing judgement for a request reqrρ has the following schema:

τ = �{ ρ �r[�′] τ
′ | ∅, ε ��′ e : τ ′ � ≺ �′〈e : τ ′〉 ρ ≈ τ ′ }

Γ, ε �� reqrρ : τ

Requests have an empty actual effect, and a functional type τ . The latent effect
is a planned selection that picks from the network those services known by � and
matching the request type ρ. The relation ρ ≈ τ models ρ being compatible with
τ ; the partial order ≺ represents visibility among services (e.g. � ≺ �′ when �′ is
visible by �). The operator � combines the request type with a service interface;
the operator � suitably assembles such combinations into a planned selection.

Back to our running example, the types inferred for the services are shown
in the figure below (they are displayed as decorations of the boxes). The public
interface of the client is the base type unit , meaning that it cannot be invoked
by other services. The interfaces of the services are as expected; for instance, the
type of �3 is a function that, when applied to a function with latent effect h, will
produce a value of type τ , and a history denoted by αc · ϕ′[h].

�1 : τ −→ (τ
ϕ[αr]−−−→ τ)

�2 : τ −→ (τ αr·αw−−−−→ τ)

�0 : unit

�3 : (τ h−→ τ)
αc·ϕ′[h]−−−−−→ τ

(reqr2
(τ −→ τ) −→ τ) f

αc; · · ·ϕ′[f()] · · ·

f = reqr1
τ −→ (τ −→ τ)

λx. ϕ[αr; · · ·]

λx. αr; · · · ;αw

· · · f() · · ·

�4 : (τ h−→ τ) h−→ τ

f

f

Fig. 2. One client, four services, and their (certified) published interfaces

To obtain an over-approximation to the behaviour of the network upon the
injection of a client, our type and effect system suitably combines the abstract
behaviour of the client with the certified interfaces of the services it can invoke.

The inferred history expression approximates the run-time behaviour of each
site in the network. For our running example, the abstract behaviour of the
whole network is rendered by the following history expression H :

10 M. Bartoletti, P. Degano, and G.L. Ferrari

{r2[�3] � �3 : αc · ϕ′[{r1[�1] � ϕ[αr], r1[�2] � αr · αw}]
r2[�4] � �4 : {r1[�1] � ϕ[αr], r1[�2] � αr · αw}}

The intuitive meaning of H is that, under the plan r2[�3] — i.e. if r2 is served
by �3 — the event αc is generated at site �3, followed by a safety framing ϕ′.
This framing wraps ϕ[αr] if �1 is chosen for r1, or αrαw if �2 is chosen instead.
Otherwise, if r2 is served by �4, then the behaviour (on site �4) depends on the
former choice for r1: if �1 was selected, then ϕ[αr], otherwise αrαw. Note also
that no event is generated by the client at site �0.

Say that a computation goes wrong at � when it reaches a configuration whose
state at � is stuck. For example, a configuration η, ϕ[e] is stuck if a step of e would
violate ϕ. Say a plan π viable for e at � when the evolution of e within a network,
under plan π, does not go wrong at �. Then, we say that a history expression H
is π-valid when the plan π is viable for all the histories produced by H under π.

For example, consider the history expression H1 = αc · ϕ′[αr · αw], where ϕ′

requires that no write αw occurs after a read αr. Then, H1 is not 0-valid. Indeed,
under the empty plan 0, the event αw occurs within a safety framing enforcing
ϕ′, and the history αcαrαw does not obey ϕ′.

We have proved two fundamental results about our type and effect system.
First, it correctly over-approximates the actual run-time histories. Second, it
enjoys the following type safety property.

Theorem 1. Let {�i〈ei : τi〉}i∈I be a network, and let ∅, Hi � ei : τi for all
i ∈ I. If Hi is πi-valid, then πi is viable for ei at �i.

Therefore, to find the viable plans for a client, one has to infer the effect H of the
client injected in the network, and then find the plans πi that make H πi-valid.
The following sections show how to do that.

2.3 Extracting Viable Plans I: Linearizing History Expressions

Once extracted a history expression H from a client e, we analyse H to find if
there is any viable plan for the execution of e. This issue is not trivial, because the
effect of selecting a given service for a request is not confined to the execution
of that service. Since each service selection affects the whole execution of a
network, we cannot simply devise a viable plan by selecting services that satisfy
the constraints imposed by the requests, only.

This is actually shown by our running example. Consider again the aborting
computation with plan r1[�2] | r2[�3], here slightly abridged:

�0 : ε, (λf. reqr2
f) reqr1

‖ �2 :
 ‖ �3 :

→π �0 : ε, (λf. reqr2
f) wait �2 ‖ �2 : ε, λx. αr ; · · · ;αw ‖ �3 :

→∗
π �0 : ε, reqr2

(λx. αr ; · · · ;αw) ‖ �2 :
 ‖ �3 :

→π �0 : ε, wait �3 ‖ �2 :
 ‖ �3 : ε, αc; · · · ;ϕ′[(λx. αr ; · · · ;αw)()]
→∗

π �0 : ε, wait �3 ‖ �2 :
 ‖ �3 : αcαr, ϕ
′[αw]

Security Issues in Service Composition 11

The choice of the service �2 for the request r1 results in downloading an ap-
plet from site �2. This seems correct, until the plan chooses the service �3 to
execute the applet. The computation aborts because the applet provided by �2
attempts to violate the policy ϕ′, that becomes active after the service �2 has
returned.

As a matter of fact, the tree-shaped structure of planned selections makes
it difficult to determine the plans under which a history expression is valid.
To cope with this problem, we have devised a static analysis that “linearizes”
such a tree structure into a set of history expressions, forming an equivalent
planned selection {π1 � H1 · · ·πk � Hk}, where no Hi has further planned
selections.

In our running example, we find that H is equivalent to the following H ′:

H ′ = {r1[�1] | r2[�3] � �3 : αc · ϕ′[ϕ[αr]],
r1[�2] | r2[�4] � �4 : αr · αw,

r1[�1] | r2[�4] � �4 : ϕ[αr],
r1[�2] | r2[�3] � �3 : αc · ϕ′[αr · αw]}

Every element of H ′ clearly separates the plan from the associated abstract
behaviour. This piece of behaviour has no further plans within, and so it is
easier to model-check its validity.

For instance, under the plan r1[�1] | r2[�3], the overall abstract behaviour is
αc · ϕ′[ϕ[αr]] at site �3. As already seen, the first two plans in H ′ are viable,
while the others give rise to non-valid behaviour. The plan r1[�2] | r2[�4] is not
viable, because the policy ϕ would be violated when the obtained code f is run
on a non certified site; instead, the plan r1[�2] | r2[�3] would violate ϕ′.

Given a history expression H , we obtain its linearization as follows. First,
we define an equational theory of history expressions: an equation H ≡ H ′

means that H and H ′ represent the same histories, under all plans. Roughly, our
equations say that each history expression C(H) is equivalent to some planned
selection H ′. For instance, when C(H) = ϕ[H], we have that:

ϕ[{π1 � H1 · · ·πk � Hk} ≡ {π1 � ϕ[H1] · · ·πk � ϕ[Hk]}

If C(H) is already a planned selection, then either it is linear, or it has one level
of nesting more than H ′. For instance, if C(H) = {π0 � H}, then:

{π0 � {π1 � H1 · · ·πk � Hk}} ≡ {π0 | π1 � H1 · · ·π0 | πk � Hk}

When oriented from left to right, these equations give rise to a rewriting sys-
tem that is easily proved finitely terminating and confluent – up to the equa-
tional laws (commutativity, associativity, idempotence, and zero) of the algebra
of plans. The resulting planned selection is linear.

For instance, the linearization of the history expression H inferred for our
client is constructed as follows:

12 M. Bartoletti, P. Degano, and G.L. Ferrari

{r2[�3] � �3 : αc · ϕ′[{r1[�1] � ϕ[αr], r1[�2] � αr · αw}]
r2[�4] � �4 : {r1[�1] � ϕ[αr], r1[�2] � αr · αw}}

≡ {r2[�3] � �3 : αc · {r1[�1] � ϕ′[ϕ[αr]], r1[�2] � ϕ′[αr · αw}]]
r2[�4] � {r1[�1] � �4 : ϕ[αr], r1[�2] � �4 : αr · αw}}

≡ {r2[�3] � {r1[�1] � �3 : αc · ϕ′[ϕ[αr]], r1[�2] � �3 : αc · ϕ′[αr · αw}]]
r2[�4] � {r1[�1] � �4 : ϕ[αr], r1[�2] � �4 : αr · αw}}

≡ {r1[�1] | r2[�3] � �3 : αc · ϕ′[ϕ[αr]], r1[�2] | r2[�4] � �4 : αr · αw,

r1[�1] | r2[�4] � �4 : ϕ[αr], r1[�2] | r2[�3] � �3 : αc · ϕ′[αr · αw]}

The technical role of linearization is unveiled by the following theorem, that
will enable us to detect the viable plans for service composition.

Theorem 2. If H = {π1 �H1 · · ·πk �Hk} is linear, and Hi is 0-valid for some
i ∈ 1..k, then H is πi-valid.

Summing up, we extract from an client e a history expression H , we linearize it
into {π1 � H1 · · ·πk � Hk}, and if some Hi is valid, then we can deduce that H
is πi-valid. By Theorem 1, the plan πi safely drives the execution of e, without
resorting to any run-time monitor.

2.4 Extracting Viable Plans II: Verifying Validity

To verify the validity of history expressions that have no planned selections, it
suffices to apply the verification technique of [7], briefly described below. Our
technique consists in smoothly transforming history expressions in procesess of
Basic Process Algebras (BPAs), and in model checking them with Finite State
Automata (FSA). The standard decision procedure for verifying that a BPA
process p satisfies a (ω-regular) property ϕ amounts to constructing the push-
down automaton for p and the Büchi automaton for the negation of ϕ. Then,
the property holds if the (context-free) language accepted by the conjunction of
the above, which is still a pushdown automaton, is empty. This problem is decid-
able, and several algorithms and tools show this approach feasible [20]. Since our
execution histories are always finite and our properties are regular, it turns out
that we can simplify this procedure by using FSA, instead of Büchi automata.

However, our notion of validity is non-regular, because of the arbitrary nesting
of framings. As an example, language denoted by H = μh. α + h · h + ϕ[h] is
context-free and non-regular, because it contains unbounded nesting of framings
(technically, it is equivalent to the language of balanced parentheses). Since
context-free languages are not closed under intersection, the emptiness problem
is undecidable. To apply the procedure sketched above, we then manipulate
history expressions in order to make validity a regular property.

The intuition is that non-regularity is a consequence of redundant fram-
ings, i.e. vacuous nesting of the same framing. For example, the history η =
αϕ[α′ϕ′[ϕ[α′′]]] has an inner redundant safety framing ϕ around α′′. Since α′′ is
already under the scope of the outermost ϕ-framing, it happens that η is valid
if and only if αϕ[α′ϕ′[α′′]] is valid.

Security Issues in Service Composition 13

In [8], we have defined a validity-preserving transformation that, given a his-
tory expression H , yields a H ↓ that does not generate redundant safety framings.
Also, for each policy ϕ, we have defined a formula ϕ[] to be used in verifying the
validity (w.r.t. ϕ) of histories with no redundant framings.

For instance, consider again ϕ′ saying that no event αw can occur after αr.
The finite state automata enforcing ϕ and ϕ[] are shown below, where the special
events [ϕ and]ϕ denote the opening and closing of the scope of ϕ, respectively.
It is immediate to check that the history [ϕαr]ϕαw is accepted by Aϕ[] , while
αc[ϕαrαw]ϕ is not.

q0

αr

q1
αr

q2

q1 q2
αrq0

[ϕ]ϕ[ϕ]ϕ

αr

αr

αw

αw

αr, αw

αw αr αr, αw

αw

αw

q′0 q′1

Validity of history expression H with no planned selections can be decided by
showing that the BPA generated by the regularization of H (written BPA(H ↓))
satisfies a suitably constructed regular formula.

Together with Theorem 1, this dispenses us from using an execution monitor
to enforce the security policies on demand.

Theorem 3. A history expression H with no planned selections is 0-valid iff:

�BPA(H ↓)� |=
∧

ϕ∈H

ϕ[]

Back to our running example, we have that:

αc[ϕ′ [ϕαr]ϕ]ϕ′ |= ϕ[] ∧ ϕ′
[] =⇒ r1[�1] | r2[�3] viable,

αrαw |= tt =⇒ r1[�2] | r2[�4] viable,
[ϕαr]ϕ �|= ϕ[] =⇒ r1[�1] | r2[�4] not viable

αc[ϕ′αrαw]ϕ′ �|= ϕ′
[] =⇒ r1[�2] | r2[�3] not viable

2.5 Beyond Simple Plans

Recall that so far we have only considered simple plans that associate a single
service with each request. Indeed, planning service composition can be more
complex, as we will show in a while.

14 M. Bartoletti, P. Degano, and G.L. Ferrari

Assume first that the two requests r1 and r2 in the client are repeatedly
performed in a loop. Then, suppose that a new service for r2 is discovered at
site �5, offering to run the code f without any constraints. Note that, if we stick
to simple plans, then we must choose once and for all one among the viable
plans, i.e. r1[�1] | r2[�3], r1[�2] | r2[�4], and r1[�2] | r2[�5]. Consequently, at each
iteration of the loop the same service is taken for the request r2. To be more
flexible (i.e. in case the service chosen for r2 becomes unavailable), we would like
to accept as valid also the plan r1[�2] | r2[�4, �5], where r2 can be served by either
�4 or �5. This is just an example of multi-choice plans, where a request can be
resolved by a set of services. In our running example, this has the advantage of
permitting to select for r2 between �4 and �5 at each iteration of the loop.

Consider now another slight extension of our example, where the client is
billed for the services it has invoked. To do that, assume that an argument g is
passed to the request r1, to invoke a billing service through a request r3, and so
let the code provider invoice the customer �0 for the service. The same function
g is also passed later on the service which will actually run the code f , to charge
�0 for the cost of the execution.

A billing service acts as a function that takes as input an invoice (of some type
τ ′, immaterial here) and delivers back a payment certification, i.e. a function
of type τ ′

αpaid−−−→ τ ′ that generates αpaid to signal successful transaction. Let
τb = τ ′ −→ (τ ′

αpaid−−−→ τ ′) be the type of billing services. Then, the request types
of r1 and r2 would have the following form:

ρ1 = τ × τb
ψ−→ (τ −→ τ) ρ2 = (τ −→ τ)× τb

ψ−→ τ

where the property ψ on demand requires that payment is accomplished before
the control returns back to the client.

Assume now that two billing services �6 and �7 are discovered in the network.
The service �6 can be used by certified users only, while �7 imposes no constraints.
Clearly, the service which provides the code and the one which runs it can
choose different billing services. However, neither simple nor multi-choice plans
can render adequately this situation. The simple plan (yet ill-formed) that seems
to solve the problem is r1[�1] | r2[�3] | r3[�6] | r3[�7]. However, this plan cannot
express the linkage between the choice for r3 within code providers, and that
within code executers.

We therefore extend plans to keep track of dependencies among choices. The
dependent plan r1[�1.r3[�7]] | r2[�3.r3[�6]] is viable: the request r3 is resolved
with �7 within the service �1 chosen for r1, while it is resolved with �6 within the
service �3 chosen for r2. In [9] we have shown how to extract viable plans from
history expressions, also in the case of multi-choice and dependent plans.

3 Conclusions

A static approach has been proposed to study secure orchestration of services.
We have surveyed a distributed calculus with an explicit notion of location and

Security Issues in Service Composition 15

of located executions. Our calculus has primitives for enforcing local security
policies, and for invoking services that respect given security requirements.

We have devised a way of statically constructing the plans that drive suc-
cessful, secure executions. The actual histories that can occur at run-time are
over-approximated by a type and effect system. These approximations are then
model-checked to find the plans that guarantee secure executions, without the
need of execution monitoring.

Acknowledgments

Research partially supported by the EU, within the FETPI Global Computing,
Project IST-2005-16004 Sensoria (Software Engineering for Service-Oriented
Overlay Computers).

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th
Annual Network and Distributed System Security Symposium, 2003.

2. R. Akkiraju et al. Web Service Semantics. WSDL-S technical note (version 1.0),
2005.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Springer-Verlag, 2004.

4. S. Anderson et al. Web Services Trust Language (WS-Trust), 2005.
5. T. Andrews et al. Business Process Execution Language for Web Services

(BPEL4WS), Version 1.1, 2003.
6. B. Atkinson et al. Web Services Security (WS-Security), 2002.
7. M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing secure service composition.

In Proc. 18th Computer Security Foundations Workshop (CSFW), 2005.
8. M. Bartoletti, P. Degano, and G. L. Ferrari. History based access control with

local policies. In Proc. Fossacs, 2005.
9. M. Bartoletti, P. Degano, and G. L. Ferrari. Plans for service composition. In

Workshop on Issues in the Theory of Security (WITS), 2006.
10. M. Bartoletti, P. Degano, and G. L. Ferrari. Types and effects for secure service or-

chestration. In To appear in Proc. 19th Computer Security Foundations Workshop
(CSFW), 2006.

11. K. Bhargavan, R. Corin, C. Fournet, and A. D. Gordon. Secure sessions for web
services. In Proc. ACM Workshop on Secure Web Services, 2004.

12. K. Bhargavan, C. Fournet, and A. D. Gordon. A semantics for web services au-
thentication. In Proc. ACM Symposium on Principles of Programming Languages,
2004.

13. E. Bonelli, A. Compagnoni, and E. Gunter. Typechecking safe process synchro-
nization. In Proc. Foundations of Global Ubiquitous Computing, 2004.

14. D. Box et al. Simple Object Access Protocol (SOAP) 1.1. WRC Note, 2000.
15. D. Box et al. Web Services Policy Framework (WS-Policy), 2002.
16. A. Brogi, C. Canal, and E. Pimentel. Behavioural types and component adaptation.

In Proc. AMAST, 2004.
17. A. Brogi and R. Popescu. Towards semi-automated workflow-based aggregation of

web services. In Proc. ICSOC, 2005.

16 M. Bartoletti, P. Degano, and G.L. Ferrari

18. R. Chinnici, M. Gudgina, J. Moreau, and S. Weerawarana. Web Service Description
Language (WSDL), Version 1.2, 2002.

19. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarane. The next step in
web services. Communications of the ACM, 46(10), 2003.

20. J. Esparza. On the decidability of model checking for several μ-calculi and Petri
nets. In Proc. 19th Int. Colloquium on Trees in Algebra and Programming, 1994.

21. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on LISP and Functional Programming, 1986.

22. A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. In Proc. IEEE Computer Security Foundations Workshop, 2002.

23. D. Gorla, M. Hennessy, and V. Sassone. Security policies as membranes in systems
for global computing. In Proc. FGUC, 2004.

24. K. Honda, V. Vansconcelos, and M. Kubo. Language primitives and type discipline
for structures communication-based programming. In Proc. ESOP, 1998.

25. R. Khalaf, N. Mukhi, and S. Weerawarana. Service oriented composition in
BPEL4WS. In Proc. WWW, 2003.

26. A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web service compo-
sitions as constraints. In Constraint Programming CP, 2005.

27. S. B. Mokhtar, N. Georgantas, and V. Issarny. Ad hoc composition of user tasks
in pervasive computing environment. In Software Composition, 2005.

28. F. Nielson and H. R. Nielson. Type and effect systems. In Correct System Design,
1999.

29. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matchmaking of
web services capabilities. In First International Semantic Web Conference on The
Semantic Web, 2002.

30. M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and di-
rections. In WISE, 2003.

31. M. Papazouglou and D. Georgakopoulos. Special issue on service oriented com-
puting. Communications of the ACM, 46(10), 2003.

32. P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing web services
description and discovery to facilitate composition. In Semantic Web Services and
Web Process Composition, 2005.

33. P. Sewell and J. Vitek. Secure composition of untrusted code: box-π, wrappers and
causality types. Journal of Computer Security, 11(2), 2003.

34. M. Stal. Web services: Beyond component-based computing. Communications of
the ACM, 55(10), 2002.

35. J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and
Computation, 2(111), 1994.

36. P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In Proc. ISWC, 2004.

37. A. Vallecillo, V. Vansconcelos, and A. Ravara. Typing the behaviours of objects
and components using session types. In Proc. of FOCLASA, 2002.

38. W. Vogels. Web services are not distributed objects. IEEE Internet Computing,
7(6), 2003.

39. W3C. UDDI Technical White Paper, 2000.
40. T. Woo and S. Lam. A semantic model for authentication protocols. In IEEE

Symposium on Security and Privacy, 1993.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, p. 17, 2006.
© IFIP International Federation for Information Processing 2006

Separating Distribution from Coordination and
Computation as Architectural Dimensions

José Luiz Fiadeiro

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk

The power of architectural modelling approaches in addressing the complexity of
software systems derives, to a large extent, from the way they are able to separate
coordination from computation concerns. However, distribution has become a key
factor of complexity in the modelling of ubiquitous, software-intensive systems.
Distribution interferes with both the way computations are performed and interactions
are coordinated. Can we separate it as a third architectural dimension? If so, how can
we derive the joint behaviour that emerges when the three dimensions are brought
together?

In this talk, we provide an overview of our joint work with Dr. Antónia Lopes,
from the University of Lisbon, around CommUnity – a prototype language for archi-
tectural description that provides a formal framework in which the questions above
can be formulated and answered in general mathematical terms.

The Bisimulation Proof Method: Enhancements
and Open Problems

Davide Sangiorgi

Università di Bologna, Italy
http://www.cs.unibo.it/~sangio/

Bisimulation (and, more generally, co-induction) can be regarded as one of the
most important contributions of Concurrency Theory to Computer Science.
Nowadays, bisimulation and the co-inductive techniques developed from the idea
of bisimulation are widely used, not only in Concurrency, but, more broadly, in
Computer Science, in a number of areas: functional languages, object-oriented
languages, type theory, data types, domains, databases, compiler optimisations,
program analysis, verification tools, etc.. For instance, in type theory bisimu-
lation and co-inductive techniques have been used: to prove soundness of type
systems; to define the meaning of equality between (recursive) types and then to
axiomatise and prove such equalities; to define co-inductive types and manipu-
late infinite proofs in theorem provers. Also, the development of Final Semantics,
an area of Mathematics based on co-algebras and category theory and that gives
us a rich and deep perspective on the meaning of co-induction and its duality
with induction, has been largely motivated by the interest in bisimulation.

In my talk I will discuss the bisimulation proof method – an instance of the
co-induction proof method – that is at the heart of the success of bisimulation. I
will discuss a number of enhancements of the method and some open problems.

The objective of enhancements is to relieve the work involved with the bisim-
ulation proof method. Thus proving a bisimulation result becomes simpler. Such
enhancements can sometimes be extremely important. They seem to be even
essential in calculi for mobility such as the π-calculus [Mil99, SW01], and in
higher-order languages (that is, languages where substitutions can involve the
replacement of variables with arbitrary terms of the language) such as Higher-
Order π-calculus [San92], Ambients [CG98], or even sequential languages such
as the λ–calculus.

References

[CG98] L. Cardelli and A.D. Gordon. Mobile ambients. In Nivat. M., editor, Proc.
FoSSaCS ’98, volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer Verlag, 1998.

[Hir99] D. Hirschkoff. Mise en oeuvre de preuves de bisimulation. PhD thesis, Phd
Thesis, Ecole Nationale des Ponts et Chausses, 1999.

[HPS05] Daniel Hirschkoff, Damien Pous, and Davide Sangiorgi. A correct abstract
machine for safe ambients. In COORDINATION, pages 17–32, 2005.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 18–19, 2006.
c© IFIP International Federation for Information Processing 2006

The Bisimulation Proof Method: Enhancements and Open Problems 19

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, 1999.
[MZN05] M. Merro and F. Zappa Nardelli. Behavioural theory for mobile ambients.

Journal of the ACM. To appear, 2005.
[Pou05] Damien Pous. Up-to techniques for weak bisimulation. In ICALP, pages

730–741, 2005.
[San98] D. Sangiorgi. On the bisimulation proof method. Journal of Mathematical

Structures in Computer Science, 8:447–479, 1998.
[SM92] D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In

W.R. Cleveland, editor, Proc. CONCUR ’92, volume 630 of Lecture Notes
in Computer Science, pages 32–46. Springer Verlag, 1992.

[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis CST–99–93, Department of Computer
Science, University of Edinburgh, 1992.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 20 – 32, 2006.
© IFIP International Federation for Information Processing 2006

An Approach to Quality Achievement at the
Architectural Level: AQUA

Heeseok Choi1, Keunhyuk Yeom2, Youhee Choi3, and Mikyeong Moon2

1 NTIS Organization, Korea Institute of Science and Technology Information
Eoeun-dong 52-11, Yuseong-gu, Daejeon, 305-806, South Korea

choihs@kisti.re.kr
2 Department of Computer Engineering, Pusan National University
30 Changjeon-dong, Keumjeong-gu, Busan, 609-735, South Korea

{yeom, mkmoon}@pusan.ac.kr
3 Embedded S/W Research Division, Electronics and Telecommunications

Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, South Korea
yhchoi@etri.re.kr

Abstract. Architecture-based software development plays an important role in
successfully developing and managing large and complex software systems.
Recently, there have been a number of studies for designing, evaluating, or
transforming architectures. However, there is not much work being done for
closely connecting an architectural evaluation with an architectural transfor-
mation in order to achieve quality attributes during the architecture-based
software development. For this reason, it is still difficult to achieve consistently
quality attributes at the architectural level. This paper presents an approach to
quality achievement in architecture-based software development, which is
called AQUA. The AQUA involves two distinctive activities, which are
architectural evaluation and transformation, but these activities can be seam-
lessly combined through producing relevant artifacts based on the design
decisions that led to the architecture. Due to the proposed approach, we can
expect to achieve quality attributes in architecture-based software development.

1 Introduction

Quality attributes of large software systems are principally determined by the system’s
software architecture, which represents a common high-level abstraction of the system
[1,2]. Therefore, architecture-based software development plays an important role in
successfully developing and managing large and complex software systems [1,3,4].

Recently, there have been a number of studies for designing, evaluating, or
transforming an architecture. Namely, methods for designing software architectures
for developing quality softwares[1], methods for evaluating software architectures
with respect to software quality attributes (e.g.[2],[3],[4],[5]), or methods for trans-
forming a software architecture in order to improve one or more of its quality
attributes (e.g.[3],[6],[7]) have been studied. There is, however, not much work being
done for closely connecting architectural evaluation with architectural transformation
in order to achieve quality attributes during the architecture-based software
development. For this reason, it is still difficult to achieve consistently quality
attributes at the architectural level.

 An Approach to Quality Achievement at the Architectural Level: AQUA 21

This paper presents an approach to quality achievement in architecture-based
software development, which is called AQUA afterwards. The AQUA involves two
distinctive activities, which are architectural evaluation and transformation. However,
these activities can be seamlessly combined through allowing the evaluation artifacts
to be effectively utilized for architectural transformation centering around design
decisions acquired from architectural evaluation. Furthermore, activities for archi-
tectural evaluation in the AQUA play a significant role in revealing any potential
defects or assessing the fulfillment of required quality requirements, and activities for
architectural transformation play a significant role in reducing defects in the
architecture or making changes to the architecture.

2 Overview of AQUA Process

In this paper, we present an approach to quality achievement in architecture-based
software development, which is called AQUA. The AQUA provides software
architects with a mean for achieving quality attributes at the architectural level.
For the purpose of achieving quality attributes during architecture-based software
development, it is necessary to transform architectures based on the evaluation
results as well as to evaluate them. Therefore, the AQUA involves two kinds of
distinctive activities, which are architectural evaluation and transformation.
Namely, the AQUA integrates activities for providing insights of an architecture
with respect to its desired qualities with activities for making changes to the
architecture within a framework. Due to the AQUA, it can be easily performed to
achieve quality attributes at the architectural level without difficulties of bridging
heterogeneous approaches. In other words, the information acquired from
architectural evaluation can be effectively utilized in making changes to the
architecture for quality achievement.

Figure 1 presents an overview of the AQUA. The AQUA first needs the
generation of an evaluation contract for scoping software requirements and identi-
fying the desired quality attributes of an architecture. Then the AQUA requires
characterizing each quality attribute for specializing explicitly the characteristics
of quality attributes. Next, the AQUA includes the identification of architectural
design decisions having an important impact on the achievement of quality
attributes. Such design decisions can be identified by characterizing key designs
relevant to quality achievement in the presented architecture with considering the
characteristics of quality attributes. Based on the decisions, the AQUA includes
the generation of an architecture profile representing the quality achievement of
the architecture, and gets to generate a prediction facility helpful in understanding
the traceability between quality attributes and architectural designs. Namely, it
provides insights concerned with the quality achievement of the architecture with
respect to its desired qualities. According to the insights about quality
achievement, it is necessary to make changes to the architecture for the purpose of
achieving quality attributes. Furthermore, the changes should be able to be
planned for avoiding unnecessary changes. For this reason, the impact on other
design decisions should be considered before applying the changes to the

22 H. Choi et al.

Evaluation Contract

Quality Attribute Characterization

Decision Constraint Graph

Architecture Profile

Prediction Facility

Architectural Design
Decisions

Software
Requirements

Software
Architecture

Transformation Strategies

Experiences
Knowledge
Standards

D3

D2

D4

D5

D6

D7

D1

[Initial Inputs] [Architectural Evaluation]

D2, D1, D3

[Architectural Transformation]

Quality AttributesQuality Attributes

Quality
Requirements

Functional
Requirements

ResponsesStimuli
Quality

Attributes
ResponsesStimuli

Quality

Attributes

D7

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D6

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D5

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D4

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D3

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D2

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

D1

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision
Variable

Rationale

Quality

Decision

Architecture

.

.

.

D3

D2

D1

+

-+

++

…Q3Q2Q1

Fig. 1. The AQUA process

architecture. Therefore, the AQUA includes the generation of a decision con-
straint graph for representing explicitly the dependencies among design decisions,
then for tracing easily the impacts of a decision change. Through using the
decision constraint graph, the AQUA guides the establishment of transformation
strategies that lead to a new architecture. Finally, the activities of the AQUA for
conducting an evaluation and transformation of an architecture can be repeatedly
performed until reaching the desired levels of quality attributes in the architecture.
Therefore, the AQUA provides software architects with a mean that supports
achieving quality attributes during architecture-based software development. In
the sections below, these artifacts are discussed in more detail.

3 Quality Achievement Activities of the AQUA Process

3.1 Understanding Quality Achievement Goals Using Evaluation Contract

The evaluation contract means the consensus between users and software architects
about expectations from the evaluation for quality achievement. Namely, expectations
from the evaluation can be concluded and negotiated. This contract includes the lists
of quality and functional requirements, their relationship, and identifies quality goals
of architecture.

Figure 2 represents generating an evaluation contract. To generate an evaluation
contract, software architects first document quality requirements and functional
requirements of a system separately. In general, functional requirements have rela-
tions to one or more quality requirements. Subsequently software architects determine
the scope of functional requirements, then software architects determine the scope of
quality requirements. Finally, software architects identify the quality attributes
representing the goals of an architectural evaluation for quality achievement.

 An Approach to Quality Achievement at the Architectural Level: AQUA 23

Quality AttributesQuality Attributes

Quality
Requirements

Functional
Requirements

Evaluation Scope
of Functions

Evaluation Scope of Non-Functions

Functional
Requirements

Quality
Requirements

Software RequirementsSoftware Requirements

Evaluation ContractEvaluation Contract

have relations to

Fig. 2. Generating an evaluation contract

3.2 Finding Architectural Design Decisions

Software architecture is composed of architectural design decisions, which are the
aspects of an architecture that have a significant impact on achieving quality
attributes, such as components, connectors, and configuration. Namely, architectural
decisions are made from an overall system perspective. Essentially, these decisions
identify the system’s key structural elements, the externally visible properties of these
elements, and their relationships, and they define how to achieve the architecturally
significant requirements[3]. Since architectural design decisions represent decisions
on various design alternatives applicable to design problems during architectural
design, these decisions can be interpreted as pairs of decision variable and decision
value. The following are to illustrate the concepts of decision variables and decision
values, respectively:

 A decision value describes a design itself applied to the current architecture as
the selected solution out of design alternatives applicable to each design issue.
The decision values can be easily conceived from a well presented software
architecture. More specifically, parts of designs relevant to functional
requirements within the evaluation scope for quality achievement should be first
identified. Next, each design is summarized in terms of design elements,
relationships, and their properties. Finally, the decision values describing
meaningfully key designs are identified in the presented architecture through
characterizing such design summaries.

 A decision variable describes the architectural design issue that each selected
solution is addressing, such as “What are the big parts of the system?” and/or
“How are they connected?”. Such decision issue can be found by analyzing
decision values based on architectural knowledge such as design patterns, styles,
and architectural views. Namely, the decision variables can be determined by
asking questions about why the decision values have resulted from software
requirements.

Figure 3 represents the finding of architectural design decisions. As in the above
illustrations about a decision variable and a decision value, software architects should
first identify design areas relevant to functional requirements within the evaluation

24 H. Choi et al.

Fig. 3. Finding architectural design decisions

scope (in Figure 3). Subsequently, key designs should be summarized (in
Figure 3). Then decision values can be identified through characterizing design
summaries (in Figure 3). Finally, decision variables are determined by identifying
one or more design issues that each decision value involves (in Figure 3).

3.3 Generating Decision Constraint Graph

Architectural design decisions also have relations to other decisions in terms of the
consistency among designs. For instance, a decision for determining elements of a
system should be consistent with a decision for structuring the system. The decision
constraint graph is a graph for maintaining the consistency among design decisions.
The graph helps in representing explicitly the dependencies among design decisions,
and in tracing easily the impacts of a decision change. Here, architectural design
decisions introduce two kinds of design constraints, which are unary and binary
constraints. The following are to illustrate unary constraints and binary constraints:

 A unary constraint captures any constraint to the design that the chose
alternative (the decision value) might pose, which restricts design alternatives
applicable to each design issue (the decision variable). In order to determine
unary constraints, software architects should first analyze the characteristics of
decision values at various points in the design. For example, if the design
elements support the concurrency of system, it can be considered that there is
the constraint equal to concurrency support. Next, software architects should
determine whether the characteristics are closely related to the requirements
specified in previous evaluation contract. Finally, the characteristics irrelevant
to requirements should be excluded.

 A binary constraint captures any constraint for design consistency that two
decision values might pose each other, which represents a condition restricting
design alternatives applicable to relevant decision variables. In order to
determine binary constraints, software architects should analyze only the
characteristics causing consistency problems between two decision values.

 An Approach to Quality Achievement at the Architectural Level: AQUA 25

Decision Constraint GraphDecision Constraint Graph

D2

D1

D3

Unary Constraints
Decision
Variable

D4

Decision Variable

D3

D2

D2

D1

A

D3

D2

D5

Binary Constraints
B

D2

D3

D2

D4

D5

D6

D7

D1

Unary ConstraintsUnary Constraints

Architectural
Design Decisions
Architectural

Design Decisions

Binary ConstraintsBinary Constraints

D7

Architectural

Spot

Decis ion

Value

Alternatives

Decis ion

Variable

Rationale

Architectural

Spot

Decis ion

Value

Alternatives

Decis ion

Variable

Rationale

D6

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

D5

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

D4

Architectural

Spot

Decision

Value

Alternatives

Decision

Variable

Rationale

Architectural

Spot

Decision

Value

Alternatives

Decision

Variable

Rationale

D3

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

D2

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

Architectural
Spot

Decision
Value

Alternatives

Decision

Variable

Rationale

D1

Architectural

Spot

Decision

Value

Alternatives

Decision

Variable

Rationale

Architectural

Spot

Decision

Value

Alternatives

Decision

Variable

Rationale

Fig. 4. Generating a decision constraint graph

Figure 4 represents the generation of a decision constraint graph. Each node in the
graph represents a decision variable, and each edge in the graph represents constraint
relationship between two decision variables. To generate a decision constraint graph,
software architects should first document two kinds of constraints according to the above
illustration; unary constraints and binary constraints. Based on the identified constraints,
the relationships among design decisions are determined with respect to design
consistency. As a result, nodes and edges of decision constraint graph are defined.

3.4 Applying Architectural Changes for Quality Achievement

Software architects can apply various changes in order to reduce any potential defects,
or to make changes to the architecture. Each change leads to a new version of the
architecture that has the same functionality, but different satisfaction for desired
quality attributes. However, applying a change to a specific design area may have an
impact an adjacent design area or whole architecture. Therefore, it is necessary to
analyze how a change to the specific area affected on other areas and to determine
applicable design alternatives for the target area needs to be changed.

To do this, software architects first find architectural alternatives. To find
architectural alternatives, we can utilize various design theories or refer to other
alternatives from candidate architectures or architect’s experience. To select appro-
priate architectural options, we should analyze the architectural options with respect
to the scope and impacts of applying them. In particular, architectural options must be
consistently selected against other architectural decisions. To achieve this goal, we
propose checking the following consistencies based on the decision constraint graph.

 Node consistency means the satisfaction of unary constraints restricting the
decision values applicable to a decision variable. This also means that all archi-
tectural alternatives unsatisfying unary constraints on a decision variable would
be pruned from the candidate solutions of the variable.

 Arc consistency is the satisfaction of binary constraints representing a condition
between two decision variables. Namely, architectural alternatives applicable to
the specific design should satisfy arc consistency between the designs.

26 H. Choi et al.

4 An Example: House Alarm System

To address the practical applicability and features of our approach, we have
chosen an example that is familiar but rich with interesting design and archi-
tectural problems, that of the House Alarm System (discussed in [8] and
elsewhere). A house alarm system consists of a main unit to which a number of
sensors and alarms are connected. The sensors detect movements in the guarded
area, and the alarms generate sounds and/or lights to scare off an intruder. The
total area that can be guarded is divided into cells, where a cell contains some
sensors and some alarms that guard a specific area. Since the house alarm system
is included in real-time systems, there are some special concerns when modeling
the system. Naturally, concurrency, communication, and synchronization are the
most important factors, but fault tolerance, performance optimization, and
distribution must also be dealt with when modeling a house alarm system.

In this example, we focused on illustrating that the AQUA seamlessly supports two
distinctive activities centering around architectural design decisions. For this reason,
we omitted some artifacts such as quality attribute characterization and architecture
profile in this paper. Furthermore, this paper introduced only architectural designs
necessary for understanding the proposed approach. As shown in Figure 5 through
Figure 7, partial software architecture of a house alarm system was presented with the
4+1 view model in UML. Firstly, Figure 5 represents a set of key abstractions for the
system and their logical relationships. Sensors and alarms are connected to a cell
handler, which is an active class that handles a specific cell. The cell handler is
connected to the system handler, which is an active class that handles the user
communication. Next, Figure 6 represents a partially logical organization between
sensors and alarms in the system. The house alarm system is structured based on the
shared memory style. Finally, Figure 7 shows the interaction when a sensor
detectssomething. It then sends an asynchronous alarm signal to the cell handler.
Subse-uently, the cell handler sends in parallel synchronous trigger signals to all
alarms and an asynchronous alarm signal to the system handler. Inside the system
handler, the alarm signal is handled synchronously.

System Handler

Supervisor

Keyboard Handler Wrapper

LCD Display Wrapper

Sound Alarm

Call Handler Sensor

Alarm

<<persistent>>
Call Configuration Information

<<persistent>>
System Configuration Information

Log

1..*

1..*

1

1

..*

11

1

1 1..*

Fig. 5. A set of key abstractions for the system and their logical relationships

 An Approach to Quality Achievement at the Architectural Level: AQUA 27

HandlerHandler

SensorSensor

SensorSensor

SensorSensor

SensorSensor

SensorSensor

AlarmAlarm

AlarmAlarm

AlarmAlarm

Fig. 6. An architecture of house alarm system based on the shared memory style

Sound AlarmSound Alarm

SupervisorSupervisor

LogLog

Cell HandlerCell Handler

Phone AlarmPhone Alarm Sound AlarmSound Alarm

Photo Cell
Sensor

Photo Cell
Sensor

1.3.2: Trigger

1.3.1: Storm

1.3: Alarm

1.2: Trigger

1.1: Trigger

1: Alarm

Fig. 7. The interaction when a sensor detects something

4.1 Understanding Quality Achievement Goals Using Evaluation Contract

In this example, we first defined the evaluation contract. We found that the house
alarm system had the functionality such as activity detection, alarm generation, user
communication, and system monitoring. In addition, we found that the system had
non-functionality relevant to quality attributes such as performance, concurrency, and
fault tolerance. When we defined the evaluation contract, we first placed the
functional requirements and non-functional requirements in a row and column of the
evaluation contract, respectively. The relationships between functional requirements
and non-functional requirements were naturally determined. Here, we restricted
theevaluation scope for evaluating the quality achievement of current architecture
within the requirements listed in the oblique area of Figure 8. As a result, two kinds of
quality attributes (i.e. performance, concurrency) were identified as the things to be
dealt with in this example. In this way, we could start quality achievement at
architectural level with the generated evaluation contract.

28 H. Choi et al.

Fig. 8. Evaluation contract

4.2 Finding Architectural Design Decisions

In this example, we identified some design decisions necessary for illustrating our
approach. Table 1 summarized architectural design decisions of a house alarm system.

Table 1. Architectural design decisions

Architectural design decision
Decision Variable Decision Value

Brief Description

Design Elements
(D1)

Three Kinds of
Logical Elements

-The system consists of three kinds of logical elements such
as sensors, alarms, and handlers.

Roles of Elements

(D2)

-User
Communication
-Cell Handling

-Activity Detection
-Sound/Light Effects

-The system handler handles the user communication.

-The cell handlers handle a specific cell consisting of sensors
and alarms.

-The sensors handle the low-level interrupts from the actual
device, then detect activity in a specific area.

-The alarms handle the low-level communication with the
device, then generate sound and light effects.

Properties of
Elements (D3)

Active Class -The main elements are designed as active classes.

Structure of System
(D4)

Shared Memory Style-The system is structured based on the shared memory style.

Task Partition
(D5)

Unit of Active Class -The task is modeled as the unit of active class.

Message Types

(D6)

Use of Synchronous
& Asynchronous
Messages

-Inside the system handler, the synchronous messages are
used. But outside the system handler, the asynchronous
messages are used.

Task Interaction
(D7)

Event-based
Communication

-The interaction among tasks is performed via event-based
communication

Task Synchronization
(D8)

Task Monitoring -The system monitors concurrently trying to modify or access
a shared resource.

 An Approach to Quality Achievement at the Architectural Level: AQUA 29

There were the decisions that identify the system’s key structural elements, their
properties, and their relationships. In addition, there were the interesting decisions
such as choosing patterns and message types. They became a leverage to help us
understand the architecture in practice.

4.3 Generating Decision Constraint Graph

For the generation of a decision constraint graph, we identified unary and binary
constraints on the design decisions summarized in Table 1. As results, Table 2
summarized unary constraints to each decision, and Table 3 summarized binary
constraints between the design decisions. Furthermore, the consistency relationships
among design decisions were naturally found by determining binary constraints.

Table 2. Unary constraints

Decision Variable Unary Constraints

Design Elements The inputs of system should be different from the outputs of system.

Roles of Elements Assigned roles should support the concurrency of system.

Properties of Elements Real-time properties of system should be supported.

Structure of System Relevant data among elements should be shared.

Task Partition Real-time properties of system should be supported.

Message Types Both synchronous and asynchronous properties should be supported.

Task Interaction The system should be run in terms of external events.

Task Synchronization
The tasks concurrently trying to access a shared resource should be
synchronized.

Table 3. Binary constraints

Architectural Design Decisions
Decisions Decisions

Binary Constraints

Design Elements Roles of Elements Design elements should have the independent roles.

Design Elements Structure of System There should be an element for sharing data.

Roles of Elements Properties of Elements The concurrency among elements should be
satisfied.

Roles of Elements Structure of System An element should have a role for sharing data.

Task Partition Design Elements The elements having independent roles should be
identified as concurrent tasks

Task Partition Task Synchronization The tasks concurrently trying to access a shared
resource should be synchronized.

Task Interaction Message Types The tasks should interact with each other by
transmitting any type of message.

Task Synchronization Structure of System The tasks concurrently trying to access a shared
resource should be synchronized.

Using the decisions and constraints described in Table 1 through Table 3, we

generated the decision constraint graph as shown in Figure 9. Though a few decisions
were considered in this example, the relationship among them was more complex in

30 H. Choi et al.

D1

D4

D8

D2 D3D5

D6

D7

Fig. 9. Decision constraint graph

practice. Therefore, we found that the decision constraint graph would be useful for
showing complex relationships among the decisions. In other words, the graph
showed that the decision had the consistent relationship with one or more of them.

4.4 Applying Architectural Changes for Quality Achievement

As an example, we tried to transform the current decision for synchronization among
the tasks concurrently trying to access a shared resource according to the previous
evaluation results. Namely, we considered applying a periodic execution mechanism
using a scheduler [3] to the design area of D8(Task Synchronization). Prior to
applying an alternative to a design area, however, it is necessary to analyze its impact
on an architecture. To do this, we gradually performed impact analysis starting from
change of D8. Figure 10 represents the result of impact analysis for architectural
transformation. As shown in Figure 10, some nodes of a graph were traversed during
impact analysis by checking both node consistency and arc consistency. Since the
change to the D8 doesn’t violate unary and binary constraint for D4(Structure of
System), the change to the D8 doesn’t have impact on D4. However, the adjacent
node D5(Task Partition) is affected for reasons of consistency violation. Then
additional changes for the nodes D1(Design Elements) and D4(Structure of System)
were needed by adding a scheduler to the system. As a result, we easily established a
transformation strategy consisting of D5, D1, and D4 by the sequence of � through �
in Figure 10. Through transforming the presented architecture according to the
transformation strategy, we expect to reduce the possibility of errors, but it can reduce
performance. Finally, it is necessary to validate the correctness of the transformations
performed. It can be achieved by performing iteratively the AQUA process.

D1

D4

D8

D2 D3D5

D6

D7 *

Fig. 10. Establishing a transformation strategy

5 Comparison with Existing Methods

We compared the AQUA with the existing methods in terms of activities necessary
for achieving qualities at the architectural level. To do this, we first identified the

 An Approach to Quality Achievement at the Architectural Level: AQUA 31

Table 4. Comparison with existing methods

Architecture
Evaluation &

Transformation

Architecture profile (by
iteration)

Transformation strategy

Decision constraint graph

Architectural decisions
Architecture profile

Quality attribute
characterizations

Evaluation contract

AQUA
Krikhaar’s

Approach[7]
Carriere’s

Approach[6]
Bosch’s

Approach[3]ARID[4]SAAM[4]ATAM[4]

Not defined

RPA model

RPA model

Not defined

Quality metrics

Not defined

Activity only

Activity only

Not defined

Features

Not defined

Not defined

Not defined

Not defined

Not defined

Sensitivity points
&Trade-off points

Utility tree

Scenarios

Architecture Evaluation

Not defined

Not defined

Not defined

Activity only

Not defined

Scenarios

Validating an
architecture

Modifying an
architecture

Analyzing change
impacts

Analyzing an
architecture

Specializing quality
attributes

Identifying desired
qualities

Quality profilesScanarios

Activity onlyNot defined

Activity only

Activity only

Activity only

Activity only

Architecture Transformation

Not defined

Not defined

Sensitivity points

Scenarios

Methods

Activities
for Quality
Achievement

activities through analyzing existing studies on architectural evaluation and
transformation. When we analyzed them, we particularly focused on understanding
the full process from quality identification to quality achievement. As a result, we
identified six key activities to be handled at the architectural level for quality
achievement as described in Table 4. The activities are as follows:

 Identifying desired qualities is an activity to determine the kinds of quality
attributes to be dealt with during the quality achievement of an archi-ecture.
Due to this activity, the goal for quality achievement can be clearly defined.

 Specializing quality attributes contributes in acquiring more informative
characteristics of quality attributes. In addition, it contributes in identifying
architectural decisions having a significant impact on achieving quality
attributes.

 Analyzing an architecture is an activity to determine quality achievement
of current architecture with respect to its desired qualities. It provides
insights concerned with the quality achievement of architecture.

 Analyzing change impacts is an activity to analyze the effects of making
changes to the architecture on the other quality attributes or other designs. In
particular, it helps make sure the design is consistent with one or more of them.

 Modifying an architecture leads to a new version of the architecture with
the same functionality, but with different values for its desired qualities.

 Validating an architecture is an activity to validate the correctness of the
transformations performed. Through validating the architecture, the quality
achievement can be confirmed.

Then we analyzed whether the existing methods and the AQUA effectively
supported the activities necessary for quality achievement or not. To do this, we
summarized the artifacts closely related to the activities through analyzing some
methods including the AQUA as described in Table 4. The artifacts mean that the
methods effectively support the described activity. As illustrated in Table 4, the
existing methods fail to support the activities for quality achievement consistently.
Compared with the methods described in Table 4, however, the AQUA can

32 H. Choi et al.

effectively support quality achievement in architecture-based software development
through producing explicitly the artifacts relevant to quality achievement at the
architectural level based on the design decisions.

6 Conclusions and Future Work

We presented an approach to quality achievement in architecture-based software
development, which is called the AQUA. In addition, we applied the proposed
approach to the House Alarm system to illuminate the approach. The AQUA
involves two distinctive activities, which are architectural evaluation and
transformation. Here, architectural evaluation plays a significant role in revealing
any potential defects or assessing the fulfillment of required quality requirements,
and architectural transformation plays a significant role in reducing defects in the
architecture or making changes to the architecture. However, the AQUA
effectively integrates the activities for providing insights of an architecture with
respect to its desired qualities with the activities for making changes to the
architecture within a framework. Furthermore, the AQUA seamlessly supports the
activities relevant to quality achievement centering around the architectural
design decisions by explicitly documenting them. Through following the AQUA,
it can be easily performed to achieve quality attributes at the architectural level
without difficulties of bridging heterogeneous approaches.

In the future, we expect that this approach may be more complemented and
extended as a result of ongoing researches. Presently, we are interested in several
issues in supporting architecture-based software development. In particular, the deve-
opment of mechanisms for process automation is considered to be important. We
believe our approach will be effectively involved at the early stages of a software
development lifecycle.

References

1. Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 2/E, Addison-
Wesley, 2003.

2. Kazman, R. et al., "The Architecture Tradeoff Analysis Method", Proceedings of the 4th
IEEE International Conference on Engineering of Complex Computer Systems, August
1998, pp.68-78.

3. Bosch, J., Design and Use of Software Architecture, Addison-Wesley, 2000.
4. Clements, P., Kazman, R., and Klein, M., Evaluating Software Architectures, Addison-

Wesley, 2002.
5. Dobrica, L. and Niemela, E., “A Survey on Software Architecture Analysis Methods”, IEEE

Transactions on Software Engineering, IEEE Computer Society, Vol. 28, No. 7, July 2002,
pp.638-653.

6. Carriere, S.J., Woods, S., and Kazman, R., "Software Architectural Transformation",
Proceedings of the 6th Working Conference on Reverse Engineering, October 1999, pp.13-23.

7. Krikhaar, R., et al., "A Two-phase Process for Software Architecture Improvement",
Proceedings of the International Conference on Software Maintenance, August 1999,
pp.371-380.

8. Eriksson, H.E. and Penker, M., UML Toolkit, John Wiley & Sons, 1998.

Bounded Analysis and Decomposition for
Behavioural Descriptions of Components

Pascal Poizat1,�, Jean-Claude Royer2,��, and Gwen Salaün3

1 IBISC - FRE 2873 CNRS
Tour Évry 2, 523 place des terrasses de l’Agora, F-91000 Évry Cedex

Pascal.Poizat@ibisc.univ-evry.fr
2 OBASCO Group, EMN - INRIA, LINA

4 rue Alfred Kastler, BP 20722, F-44307 Nantes Cedex 3
Jean-Claude.Royer@emn.fr

3 VASY Project, INRIA Rhône-Alpes
655 Avenue de l’Europe, F-38330 Montbonnot Saint-Martin

Gwen.Salaun@inrialpes.fr

Abstract. Explicit behavioural interfaces are now accepted as a manda-
tory feature of components to address architectural analysis. Behavioural
interface description languages should be able to deal with data types
and with rich communication means. Symbolic Transition Systems (STS)
support the definition of component models which take into account
control, concurrency, communication and data types. However, verifica-
tion of components described with protocol modelled by STS, especially
model-checking, is difficult since they possibly involve different sources
of infinity. In this paper, we propose the notions of bounded analysis
and bounded decomposition. They can be used to test boundedness of
systems and to generate finite simulations for them so that standard
model-checking techniques may be applied for verification purposes.

1 Introduction

Behavioural interface description languages and protocol descriptions are needed
in component models to address architectural analysis and verification issues
such as checking component behavioural compatibility, detecting architectural
deadlocks or building adaptors to compensate incompatible component inter-
faces, but also to relate efficiently design models and implementation ones. In
this context, different behavioural models have been used, such as process alge-
bras [1, 8, 20] or automata-based formalisms [4, 24]. In the context of a national
project, ACI DISPO, our researches are interested in checking components and
resources or services availability.

Components may exchange data with service requests, or may internally com-
pute data values on which behaviours depend, yielding compositions which dead-
lock only for some specific values (e.g., think of an arithmetic component which
� Supported by the French national project RNRT STACS on abstract and composi-

tional techniques for model-based testing.
�� Supported by the French national project ACI DISPO on component availability.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 33–47, 2006.
c© IFIP International Federation for Information Processing 2006

34 P. Poizat, J.-C. Royer, and G. Salaün

accepts two integers, x and y and denies service when y is 0). Therefore, there
is a need for component models integrating data types within behaviours. Un-
fortunately, this is known to yield state explosion problems when verifying mod-
els, especially with model-checking. Research on Symbolic Transition Systems
(STS) [10, 18, 19] aims at providing a model and dedicated verification techniques
to deal with these issues.

In this paper we develop a model of communicating components based on
STS, together with specific analysis techniques. First, we formalise our notion of
communicating and concurrent STS, with a proper semantics based on configu-
ration graphs. We also link our STS with LTS using interpretations and we state
properties relating interpretations and STS composition. This provides a unified
framework where STS and LTS can be both defined and composed. Second,
we present a decidable boundedness procedure (bounded analysis) which tests
the boundedness of communicating components architectures (called systems).
Model-checking techniques can be used thereafter to prove properties. It is com-
mon that a system handles both bounded variables and unbounded variables.
Enumerative model-checking will arbitrarily bound all the variables. Whenever
the bounds set by model-checking tools are reached, the specifier does not know
if the system is either too big for the tool or really unbounded. For instance, a
system which deadlocks for every n smaller than 10, does not imply anything
about the behaviour for greater values of n. Bounded analysis may therefore
be viewed as a complementary debugging means to detect possible flaws that
model-checking may miss in the presence of data types. Next, we develop a
decomposition technique (bounded decomposition) that is used to split systems
into parts which can be separately tested for boundedness and if so, checked
separately. This approach may not solve every problem related to infinite data
types, but it is especially worthy with the (numerous) systems involving bounded
resources (i.e., where parts associated to the resources are bounded) and with
systems where the number of components is bounded.

The paper is organised as follows. Section 2 formally defines STS, configura-
tion graphs, relations between STS and LTS, and communication between STS.
Sections 3 and 4 present, respectively, boundedness analysis and bounded de-
composition and illustrate them on examples. Section 5 reviews related work.
Finally, Section 6 draws up some concluding remarks. More details about our
approach and formal definitions can be consulted in [26].

2 Formalising Components as Symbolic Transition
Systems

This section states some definitions we use thereafter to introduce our approach.
First of all, we consider algebraic specifications as an abstraction of concrete
implementation languages like Java, C++, or Python. A signature (or static
interface) Σ is a pair (S, F) where S is a set of sorts (type names) and F a set
of function names equipped with profiles over these sorts. X is used to denote
the set of all variables, it contains a distinguished variable, SelfD, whose goal

Bounded Analysis and Decomposition 35

is much like explicit receivers in Object-Oriented languages (e.g., this in Java).
From a signature Σ and from X , one may obtain terms, denoted by TΣ,X . An
algebraic specification is a pair (Σ,Ax) where Ax is a set of axioms between terms
of TΣ,X . Let r be a ground term, r↓ denotes the normal form or normalization
(assumed to be unique) of r. v : R means that v has type R and v(u) denotes
the application of v to term u.

2.1 Symbolic Transition Systems

Symbolic Transition Systems [10, 18, 19] have initially been developed as a so-
lution to the state and transition explosion problem in value-passing process
algebras using substitutions associated to states and symbolic values in transi-
tion labels.

Definition 1 (STS). An STS is a tuple (D, (Σ,Ax), S, L, s0, T) where:
(Σ,Ax) is an algebraic specification, D is a sort called sort of interest defined in
(Σ,Ax), S = {si} is a countable set of states, L = {li} is a countable set of event
labels, s0 ∈ S is the initial state, and T ⊆ S× TΣBoolean,X ×Event× TΣD,X ×S
is a set of transitions.

Note that countable means that the set may be infinite but can be enumerated.
Events denote atomic activities that occur in the components. Events are either:
i) hidden (or internal) events: τ , ii) silent events: l, with l ∈ L, iii) emissions:
l!e, with e ∈ TΣ,{SelfD}, or iv) receptions: l?x : R with x ∈ X\{SelfD}. Inter-
nal events denote internal actions of the components which may have an effect
on its behaviour yet without being observable from its context. Silent events
are pure synchronising events, while emissions and receptions naturally corre-
spond, respectively, to requested and provided services of the components. To
simplify we only consider binary communications here, but emissions and recep-
tions may be extended to n-ary emissions and receptions. STS transitions are
tuples (s, μ, ε, δ, t) for which s is called the source state, t the target state, μ
the guard, ε the event and δ the action. Each action is denoted by a term with
variables where at least SelfD occurs. A do-nothing action is simply denoted by
SelfD. In forthcoming figures, transitions will be labelled as follows: [μ] ε / δ.

2.2 Configuration Graphs

The semantics of STS is formalised using configuration graphs. They are obtained
applying jointly the unfolding of receptions and the reduction of ground terms
to their normal forms.

Definition 2 (Unfolding). The unfolding of an STS (D, (Σ,Ax), S, L, s0, T),
in v0 ∈ TΣD , is the STS (D, (Σ,Ax), S′, L, (s0, v0↓), T ′). The sets S′ ⊆ S ×D
and T ′ are inductively defined by: (s0, v0↓) ∈ S′ and for each (s, v) ∈ S′:

– if (s, μ, τ, δ, t) ∈ T and μ(v) ↓= true then s′ = (t, δ(v) ↓) ∈ S′ and
((s, v), true, τ, SelfD, s′) ∈ T ′,

36 P. Poizat, J.-C. Royer, and G. Salaün

– if (s, μ, l, δ, t) ∈ T and μ(v) ↓= true then s′ = (t, δ(v) ↓) ∈ S′ and
((s, v), true, l, SelfD, s′) ∈ T ′,

– if (s, μ, l!e, δ, t) ∈ T and μ(v)↓= true then s′ = (t, δ(v)↓) ∈ S′ and
((s, v), true, l!e(v)↓, SelfD, s′) ∈ T ′, and iv) if (s, μ, l?x : R, δ, t) ∈ T
then for each r : R such that μ(v, r)↓= true, there is s′ = (t, δ(v, r)↓)) ∈ S′

and ((s, v), true, l!r, SelfD, s′) ∈ T ′.

Pairs (s, v) are configurations where s is the control state. Let d be an STS. Its un-
folding in a v0 term,G(d, v0), is called a configuration graph. A configuration graph
is a particular STS without reception, where guards are all equal to true, emission
terms are in normal form and actions are do-nothing actions denoted by SelfD.

2.3 Interpretations

Configuration graphs and STS can be interpreted as LTS1. Such mappings enable
one to use existing model-checkers, such as SPIN [17] or CADP [16], to verify
these models. We introduce two LTS interpretations based on the following rules:

– (rule1) any STS transition (x, μ, ε, δ, y) is reduced to an LTS transition
(x, l, y), where l is the label of the event ε;

– (rule2) any configuration (s, v) is reduced to its control state s, and any
STS transition ((s, v), μ, ε, δ, (t, u)) is reduced to a LTS one (s, l, t).

Definition 3 (LTS Interpretations). The standard interpretation, ILTS, of
an STS, is an LTS computed with rule1 and discarding D and (Σ,Ax). The weak
interpretation, WLTS, of an STS, is an LTS computed with rule2 and discarding
D and (Σ,Ax).

We use ⊇ for the transition relation inclusion and � for the trace inclusion of
two LTSs. d1 ⊇ d2 means that d1 and d2 share the same set of states but the
set of transitions of d2 is a subset of the transitions of d1. d1 � d2 means that
any d2 trace is also a d1 trace. As defined in [2] for LTS, B = (SB, L, b0, TB)
is a simulation of A = (SA, L, a0, TA), noted B � A, iff there is a relation R
included in SA×SB such that: i) ∀sA ∈ SA, ∃sB ∈ SB such that sARsB, ii) if sA

is initial then ∃sB ∈ SB such that sARsB and sB is initial, and iii) ∀(sA, l, tA) ∈
TA, ∀sB ∈ SB, sARsB ⇒ (∃tB ∈ SB, ∃(sB, l, tB) ∈ TB ∧ tARtB).

Proposition 1. Let d be an STS:

1. WLTS(d) ⊇ WLTS(G(d, v0)),
2. ILTS(d) � ILTS(G(d, v0)),
3. ILTS(d) � ILTS(G(d, v0)).

Point 2 above defines a simulation which in turn implies trace inclusion (point 3).
Previous works [22, 12] have shown that simulation preserves a subset of μ-
calculus, namely safety properties. The above relations could be later extended
to other existing abstractions, such as [11, 22, 12, 5].
1 We recall that an LTS is a structure (S, L, s0, T) with T ⊆ S × L × S.

Bounded Analysis and Decomposition 37

2.4 Concurrency and Communication

Concurrent communicating components can be described with protocols mod-
elled by STS, and synchronous products adapted from the LTS related defini-
tion [2] can be used to obtain the resulting global system. Given two STS with
sets of labels L1 and L2, a set V of synchronisation vectors is a set of pairs (l1,
l2), called synchronous labels, such that l1 ∈ L1 and l2 ∈ L2. Hidden events
cannot participate in a synchronisation. Two components synchronise at some
transition if their respective labels are synchronous (i.e., belong to the vector)
and if the label offers are compatible. Offer compatibility follows simple rules:
type equality and emission/reception matching. A label l such that there is no
pair in V which contains l is said to be non-synchronised or asynchronous. Corre-
sponding transitions are triggered independently and have independent running
steps. The formal definition of the synchronous product of STS can be found
in [26]. The synchronous product operator is noted ⊗V and is extended to a
n-ary product and to any depth.

The configuration graph and the standard interpretation have compatibility
properties with the synchronous product, which are formalised below.

Proposition 2. Let d1 and d2 be two STS, V a synchronisation vector, v1 ∈
TΣD1

and v2 ∈ TΣD2
:

1. G(d1 ⊗V d2, (v1, v2)) ≡ G(G(d1, v1)⊗V d2, v2) ≡ (G(d1, v1)⊗V G(d2, v2)).
2. ILTS(d1 ⊗V d2) � ILTS(G(d1, v1)⊗V d2) � ILTS(G(d1 ⊗V d2, (v1, v2))).

Proposition 2.1 gives three ways to compute the configuration graph of an STS
product. Proposition 2.2 shows that the interpretation of G(d1, v1) ⊗V d2 is
a finer simulation for ILTS(G(d1 ⊗V d2, (v1, v2))) than ILTS(d1 ⊗V d2). These
results are used in Section 4 to apply the standard interpretation to composite
systems.

3 Bounded Analysis

Enumerative model-checking works on state spaces which are generated from
specifications written in high-level languages such as process algebras. Symbolic
model-checking techniques rely on different techniques (such as BDD encodings)
to deal with big state spaces. However this is not sufficient when components
encapsulate or exchange data. Possibly infinite data type domains must be re-
stricted and free variables bound to avoid state explosion. For instance, reasoning
on LOTOS specifications using CADP may be performed in different ways. The
underlying global LTS can be first generated and then verified. On-the-fly tech-
niques can also be used, in presence of concurrency, to avoid the generation of
the whole global system [23]. However, a shortcoming of all these approaches is
that model-checking is applied to a restricted finite state system and full cor-
rectness cannot be ensured. Accordingly we present in the sequel of this section
an approach preserving symbolic values. Our objective is not to replace existing

38 P. Poizat, J.-C. Royer, and G. Salaün

model-checking techniques and tools. Bounded analysis has to be viewed as a
complementary debugging means to detect possible flaws that model-checking
may miss.

3.1 Principle

It is common that a system handles both bounded variables and unbounded
variables. Enumerative model-checking will arbitrarily bound all the variables
and it may be insufficient to assert properly a given property for the whole sys-
tem. Bounded analysis begins by checking if a system is bounded, i.e., testing
if its configuration graph is finite or not. The system taken into account may
be either made up of a single component or several communicating components.
Whenever the system is bounded, bounds for variables can be computed or at
least estimated (see [21] for example) and the configuration graph may thereafter
be generated. Boundedness checking mainly traverses the system configuration
graph to seek accumulating cycles, i.e., a cycle of control states with a greater
data value at the end. When bounds are known, the generation of the bounded
system can be tuned such that the entire system can be computed. We exper-
imented the previous case with CADP, see [26] for an example. If the system
is not bounded, verification techniques developed for infinite systems are rele-
vant, see [5, 14, 13, 3, 7] for example. In the sequel we describe another way to
abstract infinite component systems using boundedness analysis. This approach
is particularly relevant on component systems, because of Proposition 2. This
proposition states that a composite system may be abstracted by checking the
boundedness of one component and if bounded, the synchronous product of the
bounded configuration graph with other components is computed. This approach
is illustrated in the next subsection and extended in Section 4 with a notion of
decomposition.

Definition 4 (Bounded STS). An STS is bounded, for an initial value v0, iff
its configuration graph is finite.

Checking boundedness is a semi-decidable problem and a semi-algorithm com-
puting the configuration graph has been implemented in our prototype. This
algorithm completely unfolds the system and merges identical configurations.
However boundedness is decidable for some specific classes of STS. Our proto-
type therefore implements a decision procedure for one of them, counter STS,
which are an adequate abstraction for many systems, see [15, 3] for related defi-
nitions. They are particularly convenient in the context of component availabil-
ity properties since counter STS can describe dynamic systems allocating finite
amounts of resources.

Definition 5 (Counter STS). A counter STS, is an STS where: i) the data
type is restricted to natural numbers (counters) ci 1 ≤ i ≤ m, ii) guards are
boolean conjunctions of the following atoms: true, false, ci > ni, or ci ≥ ni,
where ni is a natural, and iii) actions are ci:= Σm

j=1aj ∗ cj ± pi, where aj , pi are
natural numbers and at least one aj is greater than 0.

Bounded Analysis and Decomposition 39

Counter STS are as powerful as generalized transfer nets [15] which extend Petri
nets with both duplication and transfer arcs. They admit neither reseting nor
equality testing, since their boundedness would then not be decidable.

Proposition 3. The boundedness test of counter STS is decidable.

The principle of the procedure is to find an accumulating cycle in the configura-
tion graph. The proof relies on the following fact: the effect of all the transitions
may be viewed as an affine increasing function on the vector of counters. This de-
fines a well-structured transition system and boundedness is therefore decidable
following a general theorem for them [15].

3.2 Application: A Resource Allocator (V1)

This subsection describes the application of bounded analysis to an infinite sys-
tem. Whenever the bounds set by model-checking tools are reached, the specifier
does not know if the system is either too big for the tool or really unbounded. For
instance a system which deadlocks for every n smaller than 10, does not imply
anything about the behaviour for greater values of n. In such a case, bounded
analysis is successful and complements model-checking. Let us consider an infi-
nite global system in which some components are finite (bounded), which has
been proved using the method introduced above. Indeed, we compute the con-
figuration graph of the bounded STS, the product with the other STS, then
the LTS interpretation of the finite resulting system. We recall with reference
to Proposition 2.2 that it is a finer interpretation than simply computing the
product and interpreting it afterwards.

IDLE

BEG

/ gauge := gauge+1

[gauge > 0]

ask

end

/ size := M
 gauge := M

init

[gauge > 0]
acquire
/ gauge := gauge−1

[gauge < size]
release

BEG

IDLE

ASK OK

ok

[num=QUOTA] new

acquire

[i in acq] release

[num < QUOTA]

/num:= num+1

/ acq[i]:=QUOTA

init

/ num:=0 client:=i
[not i in acq] ask

/ acq:=[]
num:=0
client:=0

/ acq[i]:=acq[i]−1

Fig. 1. Resource allocator system (left: allocator, right: client system)

As an illustration, let us take a resource allocator system with two compo-
nents: the allocator and the client system. Figure 1 presents the STS descriptions
of these components. The allocator can start (init), accept a request for a quan-
tity (ask), send a resource unit (acquire), release a quantity (release), fulfill
a request (end). The maximal amount of resources shared by the allocator is M.
Variable gauge is used to keep track of the allocated resources. On the other

40 P. Poizat, J.-C. Royer, and G. Salaün

hand, one client system centralizes the management of all the clients which are
requiring resources. To simplify the presentation, we have omitted the client ac-
tions of entering and leaving the system. The client system can start (init),
send a request for a quantity (ask) and related to client i, accept a resource
unit (acquire), release a resource acquired by the client i (release), termi-
nate the request (new), return to the idle state (ok). The amount requested
by one client is identified by the QUOTA constant (with QUOTA≤M). Variable num
stores the current number of resources while acquiring them, and the acq vector
stores the acquired resources for the clients. Synchronisations are (init,init),
(release,release), (acquire,acquire), (ask,ask) and (end,ok).

Under the hypotheses of a given M and a given QUOTA, the system is not finite
since the number of clients is not known. Model-checking techniques must set
this number, and hence find a deadlock. Indeed, after a while, resources will lack
since resources acquired by the clients are not all released before starting a new
request. Thus we can only assert that the allocator deadlocks for a given number
of clients. However, bounded analysis can be performed, since the allocator is
bounded (M is a constant and gauge≤M is a global constraint). In this example
the weak interpretation of the STS (WLTS(allocator⊗V client system)) result-
ing from the synchronous product of the allocator and the client system STS,
and the configuration graph of the allocator STS (G(allocator,M)) are deadlock
free. Finally, we can detect that the synchronous product of the allocator config-
uration graph and the client STS (G(allocator,M)⊗V client system) deadlocks
without choosing arbitrarily a specific number of clients.

4 Bounded Decomposition

Results of the previous section are extended by a notion of decomposition which
allows in a first step to generate finite representations of bounded parts of a
system, and to check them in a second step.

4.1 Principle

The idea is to choose a subset of the data and to do a partial evaluation of STS
using it. The computation of the configuration graph is adjusted to only evaluate
guards and actions related to the selected data. One can then analyse parts of
an STS which can be bounded and then build an abstraction. This requires the
STS to be decomposable. In this section, we introduce our definitions on a binary
decomposition, even though the decomposition can be extended to n > 2 and
can be iterated several times.

Definition 6 (Decomposable STS). An STS (D, (Σ,Ax), S, L, s0, T) is
decomposable if and only if: i) D can be decomposed into D1 ×D2, ii) for each
(s, μ, ε, δ, t) in T , for each v = (v1, v2) : D, μ(v) ≡ μ1(v1) ∧ μ2(v2), with
μi a guard for Di, iii) for each (s, μ, ε, δ, t) in T , for each v = (v1, v2) : D,
δ(v) ≡ (δ1(v1), δ2(v2)), with δi a function on Di.

Bounded Analysis and Decomposition 41

When d is decomposable we may define two successive partial unfoldings, G1
and G2. G1 simulates the system relatively to D1 and keeps unchanged infor-
mation related to D2. G1 can be viewed as a partial evaluation of the configura-
tion graph. We focus here on emissions, however the principle extends to other
kinds of events. G1 applies to transitions (s, μ, l!e, δ, t) and values v1 : D1. If
μ1(v1)↓= true, G1 generates a transition ((s, v1), μ2, l!e, (SelfD1, δ2), (t, δ1(v1)↓
)). G2 simulates G1(d, v0

1) relatively to D2. Hence, it applies to transitions gen-
erated by G1 and values v2 : D2. If μ2(v2)↓= true, G2 generates a transition
((s, (v1, v2)), true, l!e((v1, v2))↓, (SelfD1 , SelfD2), (t, (δ1(v1)↓, δ2(v2)↓)). Dur-
ing the G1 step, internal communications and (external) emissions are evaluated.
However, receptions from D2 must be delayed until the G2 step takes place.

Proposition 4. Let d be a decomposable STS. The configuration graph G of d
can be computed as follows: G(d, (v0

1 , v
0
2)) ≡ G2(G1(d, v0

1), v0
2).

On the left hand side, a transition such as (s, μ, l!e, δ, t) with v = (v1, v2), be-
comes ((s, (v1, v2)), true, l!e((v1, v2))↓, (SelfD1, SelfD2), (t, (δ(v1, v2)↓))). On
the right hand side, the transition is ((s, v1), v2), true, l!e((v1, v2)) ↓,
(SelfD1, SelfD2), (t, (δ1(v1)↓, δ2(v2)↓)) if μ1(v1)↓= true and μ2(v2)↓= true.
Both results are equivalent taking into account the decomposition properties of
d and the state isomorphism from S1 × (D1 ×D2) to (S1 ×D1)×D2.

Definition 7 (Bounded Decomposition). If d is a decomposable STS and
G1(d, v0

1) is finite then it is a bounded decomposition of d.

Bounded decompositions define abstractions of STS which yet preserve inter-
esting properties with reference to the initial STS. These properties ensure that
some analysis for the initial STS can be undertaken on one of its bounded decom-
positions. Propositions 1.2 and 4 ensure that the standard interpretation of the
bounded decomposition G1(d, v0

1) is a simulation of the standard interpretation
of G(d, (v0

1 , v
0
2)).

Proposition 5. If d and d′ are decomposable STS then d⊗V d′ is decomposable.

There are several possible decompositions for d ⊗V d′. Note that the STS syn-
chronous product naturally yields decomposable STS. However, a nontrivial
decomposition is the following. If D = D1 × D2 and D′ = D′

1 × D′
2 then

the data type of d ⊗V d′ is (D1 × D2) × (D′
1 × D′

2) which is isomorphic to
(D1 × D′

1) × (D2 × D′
2). d and d′ being decomposable, this isomorphism may

guide a new decomposition of d⊗V d′.

4.2 Application: The Ticket Mutual Exclusion Protocol

We illustrate first the decomposition principle on a mutual exclusion protocol
inspired by the ticket protocol as described in [13]. However, our version differs
from that one since we deal with distributed components communicating by
messages, and not processes operating on a shared memory. We also distinguish
entering (use) and leaving (end) the critical section. Finally, a counter C and a

42 P. Poizat, J.-C. Royer, and G. Salaün

guard C=0 are added to the server which computes the number of processes in
their critical section. This counter is used to check the mutual exclusion property.
STS associated to process and server are described in Figure 2. Synchronisations
are summarized in the following vectors: (think,givet), (use,gives), and
(end,end).

[A=S]

/ A := 0 : Natural

end

/ A := T
think ?T : Natural

use ?S : Natural T

E

I
/ S, T, C := 0 : Natural

/ S := S + 1
C := C + 1

end / C := C − 1

S
givet !T
/ T := T+1

[C=0]

gives !S

Fig. 2. STS descriptions: process (left) and server (right)

This system is unbounded since variables S, T, and A can store arbitrary
large values. We split the variables into {} and {A} for the process, and {C} and
{T,S} for the server. With these subsets we can easily check the decomposition
of definition 6. Then, this decomposition produces a partial configuration graph
on the C counter, on which boundedness is checked.

From such a finite system, safety properties like mutual exclusion can be
checked. Mutual exclusion appears as the absence of the situation with more
than one process in state T or as the fact that C≤1. Our prototype succeeds in
generating the global system, checking the boundedness, computing the config-
uration graph and then checking mutual exclusion for up to 8 processes within
about three minutes. The resulting product (for 8 processes and the server) is
made up of 6561 states and 52488 transitions; the configuration graph contains
1280 states and 6656 transitions. However CADP and SPIN, with the default
configuration values and bounded data types, e.g., natural numbers bounded to
256, do not pass 6 processes.

4.3 Application: A Resource Allocator (V2)

This section illustrates the use of bounded decomposition on a more elaborated
variant (Fig. 3) of the Section 3 resource allocator. In this version client iden-
tities are communicated to the allocator which hence knows the client (who)
and the requested quantity. The allocated (GIVEN) and the requested (QUOTA)
amounts are natural number constants (not necessary equal). The constraint
M≥QUOTA≥GIVEN≥1 is assumed. The allocator communicates with the client sys-
tem on the delete event when there are not enough free resources. Whenever
this occurs, the client system releases the allocated resources owned by a client.
Variable num stores the current quantity acquired by a client, while total ac-
cumulates the acquired resources for all clients. Variable id is used to store the
client identities and acq the allocated quantities.

Bounded Analysis and Decomposition 43

BEG

INIT

WORK

/ size := M
 gauge := M
 who := 0

/ who := id
ask?id

[gauge<GIVEN]

init!size

acquire!who
[gauge>=GIVEN]

release?id
[gauge<size]

/ gauge := gauge−GIVEN

/ who := 0end

/ gauge := gauge+QUOTA

delete
/ gauge := gauge+QUOTA

BEG

IDLE

ASK OK

total:=total−QUOTA

/ who:=0 id.remove(i)
[i in id] release!i

acq.remove(QUOTA)
total:=total−QUOTA

num:=num−QUOTA
ok / who:=0

id:=[]
acq:=[]

/ who:=0
num:=0
total:=0

init?s / size:=s

/ num:=num+GIVEN
acquire
[num<QUOTA]

[not i in id] ask!i / who:=i

[num=QUOTA]
new / acq:=acq+[QUOTA]

id:=id+[who]
total:=total+QUOTA

[total>0] delete

/ id.pop() acq.pop()

Fig. 3. Revisited resource allocator system (left: allocator, right: client system)

The global system is not bounded, and furthermore none of the components is
bounded. A possible decomposition is to separate actions on identities from ac-
tions on quantities as allowed by Proposition 5. Hence, one has on the one hand
variables {size, gauge} and on the other hand the who variable. Regarding the
client, its decomposition is based on a partition between variables {size, num,
total} and variables {who, acq, id}. Figure 4 presents the system decompo-
sition view, which was obtained from the synchronous product of the allocator
and the client system. Guards and actions not related to the variables {size,
gauge} of the allocator and {size, num, total} of the client system are hidden
in the decomposition.

Fixing values for M, QUOTA, and GIVEN, the boundedness is checked to be
true for this decomposition. We have carried out experiments on the system for

(INIT, IDLE)

(WORK, OK)(WORK, ASK)

(BEG, BEG)

[(gauge<GIVEN, total>0)]

(delete, delete)

/ (gauge:=gauge+QUOTA,

[(gauge>=GIVEN, num<QUOTA)]

(acquire, acquire)

/ (gauge:=gauge−GIVEN,
num:=num+GIVEN)

total:=total−QUOTA)

/ (size:=M gauge:=M,

(init!size, init?s)
/ (, size:=s)

 size:=0 total:=0 num:=0)

(ask, ask) / (,)

[(true, num=QUOTA)]
(−, new)
/ (, total:=total+QUOTA)

/ (, num:=num−QUOTA)
(end, ok)

/ (gauge:=gauge+QUOTA,
total:=total−QUOTA)

(release, release)
[(gauge<size, true)]

Fig. 4. The system decomposition view for {size, gauge} and {size, num, total}

44 P. Poizat, J.-C. Royer, and G. Salaün

various values of size, QUOTA, and GIVEN. As an example with M=1000, QUOTA=2,
and GIVEN=1, a configuration graph of 2503 states and 3004 transitions is built.
Experiments show that if GIVEN does not divide QUOTA the system deadlocks. In
the state (WORD, ASK) only three transitions are possible: (acquire, acquire),
(delete, delete), and (-, new) (see Fig. 4). Since GIVEN does not divide
QUOTA, the condition num>QUOTA will be eventually true and num=QUOTA will
never be true. Note also that the condition gauge<GIVEN which enables delete
becomes false after triggering this transition (since QUOTA≥GIVEN), thus the se-
quence delete ; delete cannot occur. This is an example of a safety property
we have checked on the bounded decomposition.

On the other hand, if GIVEN divides QUOTA then the bounded decomposition
has no deadlock. However, this fact is not sufficient to ensure that the global sys-
tem is deadlock free. A thorough look at the bounded decomposition shows that
the guards left to evaluate in the G2 step are [(gauge<size, i in id)] and
[(true, not i in id)]. At least one of these guards is true since either [not i
in id] or [i in id] is true and an allocation has been done thus gauge<size
is true. Therefore the global system is not blocking if GIVEN divides QUOTA.

Resource availability is an important property in such a system. Generally it
is a mix of safety and liveness properties. However, as stated in [27], availability
properties with bounded waiting time are pure safety properties. Thus, bounded
decompositions can be applied to check them. Assuming that each action has a
maximum duration, we may be interested in the longest logical time sequence
between a client request (ask) and its end (end). The longest sequence has form:
ask ; acquirep ; delete ; acquirer ; new ; ok, where p + r = (QUOTA
% GIVEN). Therefore the global system satisfies the longest sequence property.
However one may expect to prove that: for any client the longest sequence is
ask ; acquirep ; delete ; acquirer ; new ; ok. This is true but actually
it requires an additional analysis observing that the client system freezes the
client identity during the allocation and the system is not blocking as discussed
above.

5 Related Work

Our model of concurrent components can be related to Architectural Descrip-
tion Languages (ADL). It allows one to describe behavioural interfaces of both
atomic and composite components. In addition, components can handle data
types within their protocols, and communicate synchronizing on messages. How-
ever, our focus in this paper is not to provide a new ADL but to tackle analysis
issues. [25] presents a formal ADL for which analysis is possible using techniques
presented here.

Enumerative model-checking techniques usually bound all the sources of in-
finity. Similarly, bounded model-checking [6] searches for counterexamples in
executions bounded by some length k. Therefore, let us focus on abstraction
techniques and approaches dedicated to the verification of STS or parameter-
ized systems.

Bounded Analysis and Decomposition 45

Several works use abstraction techniques to verify state-based systems
[11, 22, 12, 5]. For instance, in [11], the authors show how to extract abstract
finite state machines from finite state programs using techniques similar to ab-
stract interpretation. Our notions of abstraction and simulation are close to this
work but our starting point is a state and transition based description of a pro-
gram. In addition, our goal is to check if a bounded approximation can be built
from it. Note that Proposition 2.2 in conjunction with a boundedness procedure
gives an automatic way to approximate an infinite system. Most authors try to
define abstractions over LTS (obtained from low level specification or code) and
then address usual verification techniques on these abstracted LTS. We focus on
the use of verification in the design phase and our bounded decomposition auto-
matically builds an abstraction mapping. Components are specified directly with
STS, then we try to unfold them partially to use usual verification techniques.

Many approaches have been proposed for symbolic model-checking of vari-
ous kinds of infinite state systems, such as [14, 13, 3, 7]. A formalism similar to
our symbolic system is described in [13]. The authors define a general and con-
current system with a translation preserving semantics into Constraint Logic
Programming. They also present a method for verifying safety properties which
is relevant to infinite state systems. While the formalism is different, our data
types with positive conditional axioms are known to be equivalent to constraints
written as Horn clauses. Compared to this work, our objectives are slightly
different since rather than replacing model-checking approaches we propose to
complement them for some specific systems (decomposable and bounded). We
also emphasize [3] which computes reachability sets of counter automata. These
sets, defined by Presburger formulae, are represented by automata and the au-
thors propose an algorithm to increase convergence computation. Boundedness
is equivalent to the property of finite reachability set. A counter automata is a
counter STS allowing c ≤M guards and this provides a general semi-algorithm
for reachability.

6 Concluding Remarks

Behavioural interfaces are required in component based software engineering to
perform analysis and relate efficiently models and implementations. Most pro-
posals in this area deal with LTS models. However, more expressive models such
as STS are needed to take data encapsulation and value passing into account.
A major weakness of such models is the lack of dedicated analysis techniques.
Direct mapping into standard model-checkers results in state explosion problems
in the presence of unbounded data types and hence is not directly applicable.

In this paper we proposed an analysis framework for STS based on con-
figuration graphs and LTS interpretations. This enables one to use the usual
verification techniques on these LTS. In addition, we have also presented spe-
cific analysis techniques, namely bounded analysis and bounded decomposition,
and demonstrated how they may complement model-checking. We have devel-
oped a prototype in Python (about 4000 lines) which supports STS description,

46 P. Poizat, J.-C. Royer, and G. Salaün

configuration graph computation, product computation and the boundedness
checking. We have already applied successfully our approach (boundedness, de-
composition and model-checking) to several examples: a flight reservation sys-
tem, several variants of the bakery protocols, the slip protocol, several variants
of a resource allocator, and a cash point service.

Future work aims at extending our techniques on boundedness checking and
boundedness decomposition. For instance, the selection of counter variables guid-
ing the decomposition should be assisted by slicing techniques [9]. They can be
applied to focus on a property one wants to check (which depends on variables),
and then obtain the set of variables with a direct effect on this formula. Another
perspective is to link our prototype with the verification tools CADP or SPIN.

Acknowledgments. We would like to thank the reviewers for their useful com-
ments and suggestions.

References

1. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

2. A. Arnold. Finite Transition Systems. International Series in Computer Science.
Prentice-Hall, 1994.

3. S. Bardin, A. Finkel, and J. Leroux. FASTer Acceleration of Counter Automata in
Practice. In Proc. of TACAS’04, volume 2988 of LNCS, pages 576–590. Springer,
2004.

4. T. Barros, L. Henrio, and E. Madelaine. Behavioural Models for Hierarchical
Components. In Proc. of SPIN’05, volume 3639 of LNCS, pages 154–168. Springer-
Verlag, 2005.

5. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State
Systems Compositionally and Automatically. In Proc. of CAV ’98, volume 1427 of
LNCS, pages 319–331. Springer-Verlag, 1998.

6. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages 193–207. Springer-
Verlag, 1999.

7. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking.
In Proc. of CAV’04, volume 3114 of LNCS, pages 372–386. Springer-Verlag, 2004.

8. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1), 2005.

9. I. Brückner and H. Wehrheim. Slicing an Integrated Formal Method for Verifica-
tion. In Proc. of ICFEM’05, volume 3785 of LNCS, pages 360–374. Springer-Verlag,
2005.

10. M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Full LOTOS Based
on Symbolic Transition Systems. The Computer Journal, 45(1):55–61, 2002.

11. E. M. Clarke, O. Grumberg, and D. E. Long. Model-Checking and Abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–
1542, 1994.

12. D. Dams, R. Gerth, and O. Grumberg. Abstract Interpretation of Reactive Sys-
tems. ACM Transactions on Programming Languages and Systems, 19(2):253–291,
1997.

Bounded Analysis and Decomposition 47

13. G. Delzanno. An Overview of MSR(C): A CLP-based Framework for the Sym-
bolic Verification of Parameterized Concurrent Systems. In Proc. of WFLP’02,
volume 76 of ENTCS. Elsevier, 2002.

14. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient Algorithms for
Model Checking Pushdown Systems. In Proc. of CAV’00, volume 1855 of LNCS,
pages 232–247. Springer-Verlag, 2000.

15. A. Finkel, P. McKenzie, and C. Picaronny. A Well-Structured Framework for
Analysing Petri Nets Extensions. Information and Computation, 195(1-2):1–29,
2004.

16. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2001.

17. G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

18. A. Ingólfsdóttir and H. Lin. A Symbolic Approach to Value-passing Processes,
chapter 7 of Handbook of Process Algebra. Elsevier, 2001.

19. B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic Test Selection Based
on Approximate Analysis. In Proc. of TACAS’05, volume 3440 of LNCS, pages
349–364. Springer Verlag, 2005.

20. J. Kramer, J. Magee, and S. Uchitel. Software Architecture Modeling and Analysis:
A Rigorous Approach. In Proc. of SFM’03, volume 2804 of LNCS, pages 44–51.
Springer-Verlag, 2003.

21. S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for the Boundedness
of UML RT Models. In Proc. of TACAS’04, volume 2988 of LNCS, pages 327–341.
Springer-Verlag, 2004.

22. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System
Design, 6(1):11–44, 1995.

23. R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free Boolean Equation
Systems. In Proc. of TACAS’03, volume 2619 of LNCS, pages 81–96. Springer
Verlag, 2003.

24. S. Moschoyiannis, M. W. Shields, and P. J. Krause. Modelling Component Be-
haviour with Concurrent Automata. In Proc. of FESCA’05, volume 114(3) of
ENTCS, pages 199–220, 2005.

25. P. Poizat and J.-C. Royer. Korrigan: a Formal ADL with Full Data Types and a
Temporal Glue. Technical Report 88-2003, LaMI, CNRS et Université d’Evry Val
d’Essonne, September 2003.

26. P. Poizat, J.-C. Royer, and G. Salaün. Symbolic Bounded Analysis for Compo-
nent Behavioural Protocols. Technical report, Écoles des Mines de Nantes, 2005.
Available at http://www.emn.fr/x-info/jroyer/rrBounded.pdf.

27. F. B. Schneider. Enforceable Security Policies. ACM Transactions on Information
and System Security, 3(1):30–50, 2000.

Modeling and Validation of a Software
Architecture for the Ariane-5 Launcher�

Iulian Ober1, Susanne Graf2, and David Lesens3

1 Toulouse University, GRIMM/ISYCOM laboratory��

IUT-B 1 pl. Brassens BP 73, 31703 Blagnac, France
iulian.ober@imag.fr

2 VERIMAG
2, av. de Vignate, 38610 Gières, France

susanne.graf@imag.fr
3 EADS SPACE Transportation

66, route de Verneuil - BP 3002, 78133 Les Mureaux Cedex - France
david.lesens@space.eads.net

Abstract. We present the modeling and validation experiments
performed with the IFx validation toolset and with the UML profile
developed within the IST Omega project, on a representative space ve-
hicle control system: a model of the Ariane-5 flight software obtained
by manual reverse engineering. The goal of the study is to verify func-
tional and scheduling-related requirements under different task architec-
ture assumptions. The study is also a proof of concept for the UML-based
validation technique proposed in IFx.

1 Introduction

Model-driven engineering is making its way through the habits of software de-
signers and developers, pushed forward by the increasing maturity of modeling
languages and tools. This paradigm promotes a complete re-foundation of soft-
ware engineering activities on the basis of models, as well as the use of automatic
tools for most post-design activities. In this context, the software model is the
central artifact which gathers different aspects ranging from the requirements to
software architecture, to component behavior, etc.

More recently, the trend is extending beyond software development activities,
to system design. For this activity, which traditionally employed rather ad-hoc
models, the community is currently seeking new formalisms, like SysML [19] or
architecture description languages (ADLs). In the end, this adds new aspects
(environment, hardware architecture, process and thread mappings, etc.) to the
central artifact which becomes the system model.

The use of such heterogeneous models is justified by the complexity of current
systems which have to satisfy tightly interwoven functional and non-functional
requirements.
� This work has been partially financed by the OMEGA IST project.

�� Work performed while at VERIMAG.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 48–62, 2006.
c© IFIP International Federation for Information Processing 2006

Modeling and Validation of a Software Architecture 49

In this paper we discuss the case of such a complex system, the control soft-
ware of the Ariane-5 launcher, which is typical for the space vehicle control
domain. Applications in this field typically involve a time driven part which im-
plements the attitude and orbit control loop, and an asynchronous, event driven
part, which performs mission management tasks. The different sub-systems share
resources like busses and other spacecraft equipment.

The current practice, which consists in using cyclic sampling of asynchronous
events and a Rate Monotonic Scheduling (RMS) policy [17], offers static crite-
ria for deciding schedulability, and can offer correctness by construction (under
some additional hypotheses) for other properties like exclusive access to shared
resources. However, this policy proves to be very inflexible under demanding
reactivity constraints or under processor overloads.

Consequently, more dynamic solutions are sought by system designers, like us-
ing fixed priority preemptive scheduling outside the sufficient (but not necessary)
schedulability conditions of RMS. Such solutions rely on automatic verification
methods, which have to take into account some functional aspects of the system.

In this paper, we describe a study in which the Omega UML profile [5, 10]
(defined within the IST Omega project1) is used for modeling both functional
and architectural aspects of a representative subset of the Ariane-5 system. We
discuss the verification of both functional and scheduling-related requirements
with the IFx toolset [18] which implements the profile.

1.1 A Short Introduction to Omega UML and the IFx Tool

Omega UML is a profile targeting the design of real-time systems. The profile
supports a large subset of the operational concepts of UML: classes, with most
of their relationships (associations, composition, generalization), features (at-
tributes, operations) and behavior descriptions (state machines). Actions, which
are used to describe the effect of operations and of state machine transitions,
are written in a syntax compliant with the UML action semantics. The language
contains imperative constructs like assignments, operation calls, object creation,
signal exchange, etc.

The description of concurrent systems is supported by means of active classes.
Instances of active classes define a partition of the object space into activity
groups, each group having its own thread of control, and functioning in run-
to-completion steps. Communication is possible inside or between groups, by
exchanging asynchronous signals and by calling operations. The execution model
is an extension of the semantics implemented by the Rhapsody UML tool.

Detailed descriptions of Omega UML execution model can be found in [5].
On top of the concepts mentioned above, the Omega profile also defines a set of
time-related constructs [10].

IFx2 [18] is a toolset providing simulation and model-checking functionalities
for Omega UML models. It is built on top of the IF environment [4], and provides

1 http://www-omega.imag.fr
2 http://www-if.imag.fr/IFx

50 I. Ober, S. Graf, and D. Lesens

a compiler of UML models to IF specifications. Models may be edited with any
XMI-compatible editor3.

Model checking is based on efficient forward state-space exploration methods
for timed automata. Timed safety properties may be expressed as observers,
which are described in the sequel. Generated diagnostic traces can be analyzed
by simulation. In order to scale to complex models, IF supports optimization and
abstraction in several ways: by “exact” static optimizations (like dead variable
factorization and dead code elimination), by partial-order reduction, by data
abstraction (static slicing). More details can be found in [18].

2 The Ariane-5 Software

The Ariane-5 flight software controls the launcher’s mission from lift-off to pay-
load release. It operates in a completely autonomous mode and has to handle
both external disturbances (e.g. wind) and different hardware failures that may
occur during the flight.

This case study takes into account the most relevant points required for
such an embedded application and focuses on the real time critical behavior by
abstracting from complex functionality (like control algorithms) and implemen-
tation details, such as specific hardware and operating system dependencies.
Nevertheless, it is fully representative of an operational space system. The typi-
cal characteristic of such systems is that they implement two kinds of behavior:

– Cyclic synchronous algorithms. These are principally the control/command
algorithms (in the sequel they are called GNC for Guidance, Navigation and
Control). The algorithms and their reactivity constraints are defined by the
control engineers based on discretization of continuous physical laws.

– Aperiodic, event driven algorithms. These algorithms manage the mission
phases and perform particular tasks when the spacecraft changes from one
permanent mode to another (engine ignition and stop, stage release, etc.),
or when hardware failures occur (alternative or abortion manoeuvres).

The software components implementing this functionality are physically de-
ployed on a single processor4 and share a common bus for acquiring sensor data
and sending commands to the equipment.

The proof of correctness of the mission management components can be made
by (almost completely) abstracting from the control algorithms. In an earlier
experiment, we have used an SDL model of the mission management in order to
verify this kind of properties [3].

The correctness of control algorithms concerns two issues: their numerical
computation, and their concurrency behavior. The numerical correctness is not
considered here. For the concurrency, the proof of correctness is usually done
using the synchrony hypothesis. The synchronous approach makes verification
3 Rational Rose and I-Logix Rhapsody have been tested used in the OMEGA project.
4 In fact, a set of replicated processors, but this is out of the scope of our case study.

Modeling and Validation of a Software Architecture 51

using a non-timed semantics much simpler. The non-timed semantics just as-
sumes that all entries are available when the computation cycle starts and the
results of the computation are made available at the end of each cycle. There
exist results stating sufficient conditions under which such a synchronous design
can be implemented in a distributed and/or multi-threaded environment [20].
However, in this case study the sufficient conditions do not hold in all cases, and
the satisfaction of the synchrony hypothesis must be verified.

Therefore, in this case study we have considered more particularly the problem
of verifying that a low-level software architecture (a task model), together with
a set of other non-functional assumptions (worst case execution times, arrival
model), satisfy the reactivity constraints imposed on the software and ensure
the synchrony hypothesis for the cyclic algorithms.

The current practice for ensuring such non-functional constraints consists
in using an RMS-based scheduler. Asynchronous events are sampled with the
frequency of the smallest cycle. The schedulability of this architecture can be
decided statically, under the assumption that relevant values for WCET of tasks
can be provided. Moreover, in the current solution, the exchange of data between
the different tasks or between a functional task and the bus are allowed only in
predefined time slots at the beginning and at the end of each task’s cycle (even
if the computation finishes earlier in the cycle). Consequently, mutual exclusion
between writes in the exchange memory is satisfied by construction, and with
no possibility for priority inversion.

On the other hand, this architecture is very inflexible in the following
circumstances:

– when some acyclic events need shorter reaction time than the basic cycle
(which is in fact the case for the Ariane-5 system),

– when some cyclic algorithm needs more recent measurement data, that has
to be acquired during the cycle (also the case in the Ariane-5 system),

– when an algorithm needs a longer time than the pre-assigned slot, for in-
stance in case of high CPU load (this feature, not required today, will become
mandatory for future highly autonomous space systems).

In the case of Ariane-5, the software designers have used a more flexible archi-
tecture, which is still based on fixed priority preemptive scheduling, but which
violates some of the RMS assumptions mentioned above in order to ensure bet-
ter reactivity (reads and writes during the cycle, triggering of asynchronous code
during a cycle). Nevertheless, such an architecture has to be formally validated
with respect to the non-functional requirements concerning timing, scheduling
and mutual exclusion. This is the main objective of our case study.

3 The Verification Model

The UML model used for verification has been built manually from the exist-
ing software code, by a team from EADS Space Transportation. Its functional

52 I. Ober, S. Graf, and D. Lesens

decomposition is independent of the task architecture; it is structured around
6 objects implementing the main categories of functionality, each defined by a
singleton active class. They are:

– Acyclic: the main mission management object, which handles the start of the
flight sequence and the switching from one phase to another. Its behavior
is described by a state machine reacting to event receptions from the GNC
algorithms (e.g., end of thrust detection) or from the environment, and to
time conditions (e.g., time window protections ensuring that the treatment
associated to an external event is performed within a predefined time window
even in case of failure of the event detection mechanism).

– A set of specific objects which handle the acyclic management activities
related to a particular launcher stage. They react to events received from
Acyclic or to internal time constraints. In the study, we considered only
two stages: EAP (lateral booster) and EPC (main stage of the Ariane 5
launcher).

– Cyclics: This object manages the activation of the cyclic control/command
algorithms (GNC). The algorithms are executed in a predefined order, de-
pending on the current state of the launcher, which is tracked by the Acyclic
class. Its state machine appears in an example later on in Fig. 3. We consider
in more detail two of the algorithms activated by Cyclics, each implemented
by a separate object: Thrust Monitor, responsible for the monitoring of the
EAP thrust, and Guidance Task, which has the particularity that its acti-
vation frequency is lower than that of the other GNC algorithms.

In order to validate the software, a part of the environment needs to be
modeled. In our case, it includes two kinds of spacecraft equipment – Valves
and Pyrotechnic commands (the model includes possible hardware failures), the
external environment – namely the ground control centre, as well as abstractions
of parts of the software which are not described in the model (such as: a numerical
algorithm or the 1553MIL bus allowing the communication between the main
software and the equipment).

3.1 Capturing Functional and Timing Requirements

Using Omega UML, requirements can be formalized by means of observers, and
verified against the design model. In this section, we discuss briefly the concepts
and we give an example of how they are put to work in the Ariane-5 model.
More detail on observers can be found in [18].

Observers are special objects which monitor the execution of the model and
give verdicts when a requirement is satisfied or violated. Observers may have
their own local memory (attributes), and their behavior is described by a state
machine, in which some states are labeled with the stereotypes <<success>>
or <<error>> providing verdicts. The monitoring of model execution is done
by observing events like signal outputs, operation calls or returns, state changes,

Modeling and Validation of a Software Architecture 53

etc., or by observing the state of the system, like attribute values, contents of
queues, states of the state machines, etc. 5

We take for example the following property:

Property P1. The launcher shall not lift-off if an anomaly is detected during
the Vulcain engine ignition. In case of lift-off abort, the valves shall all be closed
within 2 seconds and the pyrotechnic commands shall not be ignited.

An anomaly on the Vulcain ignition corresponds, in our modeling of the en-
vironment, to a Valve object entering the Failed Open state. This failure shall
be detected by the software, which shall then abort the lift-off and secure the
launcher. Thus, this property is expressed more precisely as follows:
If any instance of the Valve class enters one of the states Failed Open or
Failed Close, then:

– All the instances of the Pyro class shall never enter the state Ignition done.
– 2 seconds after the valve failure, all instances of the Valve class shall be in

state Close or Failed Close, and then remain in this state forever.

This property is based on a pure black-box view of the software. Neverthe-
less, since several components are involved in aborting the lift-off, the designers
have completed the property with the requirement that the internal events Re-
quest EAP Preparation and Request EAP Release are never emitted.

Fig. 1 shows how this property can be expressed using a timed observer: each
time an Open command is received by some valve v, the observer tests whether
v reaches the state Failed Open.

If this premise holds, the observer enters state aborted, in which Pyro ob-
jects entering state Ignition done, as well as emissions of the signals Re-
quest EAP Preparation and Request EAP Release are prohibited. After 2 seconds
from entering state aborting, the observer goes to the inner state aborted in which,
additionally, Valves entering the state Open or Failed Open are also prohibited.

Note that the testing of the premise done by the observer corresponds to
the universal quantification appearing textually in the premise of the property
P1 (“any instance of the Valve class”). Such a universal quantification would
also have to be used in a state logic formula, had we used a temporal logic for
formalizing the properties. However, to the best of our knowledge, no major
model checking tool based on LTL or CTL supports directly this kind of first
order logic in the specification of state formulas. For example, in UPPAAL [14],
the same property could be expressed either by using a helper (observer) au-
tomaton which synchronizes with any Valve entering Ignition done, or by using
quantifier elimination (that only works under the restriction that the set of ob-
jects is known in advance – which is generally not true in Omega UML or IF

5 A formal discussion of the expressivity of observers is out of scope. We note that: (1)
observers are used to express linear timed safety properties, which may combine state
or event-based atomic propositions, and (2) observers embed general algorithms,
therefore their termination (hence also their satisfaction) is undecidable in general.
For practical applications, we do not view this as a limitation.

54 I. Ober, S. Graf, and D. Lesens

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko
<<error>>

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]
[v @ Failed_Open]

[v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

liftoff_aborted_right

v : Valve
t : Timer

<<Observer>>

Fig. 1. Property p1

specifications). This supports our claim that observers are a flexible formalism
for expressing common event or state-related timed safety properties.

Consider another property, required by electrical constraints on the hardware:

Property P2. The software shall not send two Open commands to the same
valve at less than 50ms of interval.

P2 constrains the distance between pairs of events concerning a same instance of
class Valve. The particularity of this property is that it concerns any consecutive
pair in the series of commands sent by the software to a (any) Valve. This kind
of property is typically easier to specify with a temporal logic.

Nevertheless, we show in Fig. 2 an observer which uses non-determinism to
pick each particular occurrence of an event pair at a time and either verify the
time distance, or skip to the next one (as the model checker explores all alterna-
tives, all pairs are eventually verified)6. In state initial, the observer waits for a
command to be sent to any Valve, stores the reference of the concerned Valve in
v1 and proceeds to state nondet. (This behavior ensures universal quantification
over the set of valves, in the same way as in P1). In state nondet, it chooses
non-deterministically whether to proceed by verifying the timing of the next
command sent to the same valve, or to return to initial and wait for another
command to (any) Valve.

The rest of the observer tests a simple timed safety condition: the next com-
mand sent to the Valve v1 does not come before 50ms. The clock t is used to

6 The observer presented here is not optimal in the required verification time/memory.

Modeling and Validation of a Software Architecture 55

valve_not_abused

t : Timer

v1 : Valve

v2 : Valve

<<Observer>> initial

wait

KO
<<error>>

nondet

OK
<<success>>

match invoke ::EADS::Environment::Valve::Open() on v1
[true]

[true] / t.set(0)

[t >= 50] / t.reset()

match invoke ::EADS::Environment::Valve::Open() on v2
[v1 <> v2][v1 = v2]

Fig. 2. Property p2

measure 50ms. In state wait, other commands may come, but they cause an
error only if they concern the valve v1. If more than 50ms elapse without error,
the observer reaches a success state and considers the property verified for this
particular events occurrence pair.

Stereotyping the OK state with <<success>> allows also to make model
checking more efficient: after the observer has reached OK, the execution of
the (system, observer) pair cannot lead to KO anymore, and may safely be
ignored.

3.2 Scheduling Constraints and Objectives

As mentioned before, the main focus in this study is on validating a particu-
lar task architecture based on fixed priority preemptive scheduling, in order to
check that is satisfies several conditions concerning schedulability and mutually
exclusive access to the bus.

In the architecture that we consider, the hypotheses of RMS [17] are not
satisfied, as asynchronous events need to be handled as soon as they arrive.
Another difficulty in using RMS-like schedulability decision criteria is that the
execution time of the cyclic tasks varies a lot depending on the current flight
phase. Fig. 3 shows the state machine of the control cycle, on which we can
see that the worst case execution time of this cycle is around 64ms, while the
best case is 37ms and the average measured by simulation is around 42ms. One
cannot simply consider at each cycle the worst case execution time (of sporadic
and cyclic tasks), as this would lead to a huge over-approximation of resource
occupation and to the conclusion that the system is non schedulable. We also
relax in some cases the requirement that reads and writes are done only in the
beginning and in the end of each task’s cycle. Therefore, the access to the bus
is not mutually exclusive by construction.

The technique we adopt for proving these constraints is to take into account
the functional behavior of the system and its impact on resource consumption.

Assigning priority levels to activities. The priorities were assigned just as in the
RMS solution from which we started, according to the relative responsiveness
required from an activity. Three levels of priority are used:

56 I. Ober, S. Graf, and D. Lesens

BGY

SRI_Upstre
am_1

 / SRI.SRI_upstream()

EAP_Calculat
e_aiming

QDP_Calculat
e_aiming

SRI_Upstre
am_2

Control_Predic
t_state_vector SRI_Down

stream

Decide_EAP
_Separation

Navigation_
performed

Interpolation_
performed

Calculate_
attitude

EAP phase QDP phase

EAP phase

QDP phase

Start_Minor_
Cycle

Guidance_ra
n

 / BGY.Perform_BGY()

[fasvol<>2] / Control.Calculate_EAP_aiming() [fasvol=2] / Control.Calculate_QDP_aiming()

 / Control.Predict_EAP_state_vector() / Control.Predict_QDP_state_vector() / SRI.SRI_downstream()

Synchro() / begin minor_cycle:=minor_cycle+1 end

 / Attitude.Calculate_Attitude()

[fasvol=2] /
Thrust_Monitor.Decide_EAP_Sepa

ration()

[fasvol<>2]

[minor_cycle<guidance_period]
[minor_cycle>=guidance_period] / begin

minor_cycle:=0;Guidance_Task!Start_Guidance_cycl
e() end

 / Data_tables.Interpolate()

[minor_cycle=6] / Navigation.Flight_Protection()

[minor_cycle=2] / Navigation.Perform_Navigation()
[minor_cycle<>2 and minor_cycle<>6]

5ms

2ms

2ms

10ms

5ms

5ms 0..5ms

20ms
10ms

5ms

10ms

Fig. 3. Statechart of the Control cycle with unitary execution times

– Functions of the Regulation components have highest priority. They are spo-
radic and take about 2 to 5 ms each time a command is executed (open a
valve, ignite a pyrotechnic command, etc.)

– Functions of the Navigation-Control components have medium priority. They
are periodic, with a period of 72ms and take 37 to 64ms to execute depending
on the current phase of the flight and other parameters.

– Functions of the Guidance components have lowest priority. They execute
every 576ms. One of the goals of scheduling analysis was to determine how
much processor time they can take in each cycle in order for the system to
remain schedulable.

Activities that are on the same priority level are handled by the same runtime
task, that is without overlapping.

Modeling the task architecture in Omega UML. Scheduling policies and resource
consumption can be modeled using the lower level constructs of the Omega
profile: objects which manipulate clocks and do the resource bookkeeping. In
parallel with the Ariane-5 study, we developed a reusable model library for the
IFx tool, which provides support for different types of schedulers.

The Scheduling library contains basically two kinds of classes organized in
two hierarchies:

– Task classes used to annotate the user model with requests for execution
time. Requests are parameterized with a duration, and depending on the
scheduling policy, with information like priority, deadline, etc. Instances of
Task classes can be shared by several objects.

– Scheduler classes are used to model the different scheduling policies. Each
created Task has to be associated with a Scheduler. Subsequently, every time
a Task requires processing time, it will communicate with its Scheduler in
order to determine the actual time of finish, based on the task duration and

Modeling and Validation of a Software Architecture 57

on the state of the Scheduler (i.e. the scheduling policy and the charge at
that moment).

For modeling the behavior of the fixed priority preemptive scheduler in timed
automata constructs, we use the scheme proposed in [9].

Scheduling objectives are modeled by observers. They are:

– The Navigation-Control (NC) functions must terminate within the 72ms
cycle and the Guidance functions within the 576ms cycle.
For the NC functions, this property is formalized in the observer in Fig. 4, by
the fact that the Cyclics component receives the signal Synchro, which signi-
fies the beginning of a cycle, only in the states Start Minor Cycle, Wait Start
or Abort. If a cycle does not finish in time, the Cyclics component is in an
intermediate computation state when the next Synchro is received and this
property is violated.
The observer expressing the analogous property for the Guidance function
is similar.

– The application uses a 1553 MIL bus. In this protocol, all data transfers
are performed under the supervision of a bus controller (the main on-board
computer in the case of the Ariane 5 case study). The software components
read and write data in an exchange memory which is transferred via the bus
to the equipment (also called remote terminal) at specific time frames (this
process is called low-level transfer). The consistency condition for bus reads
and writes is that the software components do not read or write the bus
during the low-level transfer time frames. (calls to read and write operations
do not occur while the Bus is in Transfer state).

wait

match send ::EADS::Signals::Synchro() to c

KO_NC_cycle_is
_schedulable

<<error>>

[c @ Start_Minor_Cycle or c
@ Wait_Start or c @ Abort]

[not(c @ Start_Minor_Cycle or c
@ Wait_Start or c @ Abort)]

Fig. 4. Scheduling objective: the control cycle finishes in time

4 Ariane-5 Verification Results

4.1 Validation Methodology

In the context of the IFx toolset, the validation of UML models means performing
several activities, which range from simple syntactic and static semantic checking
to dynamic property verification, with the goal of improving the model and
its conformance to its requirements. These activities are supported by different
tools. The standard workflow used also in this case study is summarized below7.
7 A more detailed description can be found in [4].

58 I. Ober, S. Graf, and D. Lesens

1. The translation phase consists in invoking the uml2if compiler. Standard
static checks are performed (name and type checks, checking of well formed-
ness constraints).

2. The simplification phase consists in the application of static analysis and
abstraction methods implemented in IF:
– in the early validation phases we use mainly methods fully preserving

verification results (such as dead variable / dead code analysis and clock
reduction)

– in the later phases (verification), we use in addition methods leading
to over approximations such as abstractions of variables or clocks, or
relaxation of urgency constraints.

3. The simulation phase consists in exploring the model by a mixture of interac-
tive, guided and random simulation which allows usual debugging tasks like
saving and reloading a played scenario, stepping back and forward through
it, inspecting the system state, inserting conditional breakpoints, etc.

4. The model-checking phase is the main validation phase, in which the product
space of the relevant part of the model and of a set of observers is searched
for absence of error states, while avoiding the parts of the graph reachable
only via success states.
In this phase, there are 2 possibilities for handling time: discrete or symbolic.
With discrete time, time progress is represented by a tick transition common
to all processes, and this representation allows the use of more expressive
time constraints. In case of the symbolic representation of time, a DBM is
associated with each system state, like in the timed-automata based tools
Kronos [22] and Uppaal [14]. The symbolic representation leads in most
examples to much smaller state spaces.

5. the IF toolset implements a number of other verification techniques. The
most interesting ones are comparison of models and minimization of models
with respect to simulations and bisimulations. Minimization has been used
in our case study to extract most general properties with respect to an
observation criterion, given by a set of observable events (see in [3, 4]).

4.2 State Explosion and Use of Abstractions in Ariane-5

The duration of a basic cycle of the cyclic behavior of the Ariane-5 flight soft-
ware is 72 ms. Each basic cycle contains several hundreds of steps. As the
acyclic behavior uses some timers also to measure long durations, when com-
posed with the cyclic behavior, every state reached through these steps is a new
global system state. This quickly leads to an explosion, especially in the case of
Ariane-5, where the footprint of a system state is quite large (see also §4.3).

In order to cope with the complexity of the model, we had to apply more
evolved abstraction and reduction techniques which need a good understand-
ing of both the functioning of the system and the verification and abstraction
technology.

Modeling and Validation of a Software Architecture 59

Compositional Abstraction. We have applied this well known technique which
consists in the verification of properties of a subsystem, by replacing the other
parts of the system — which play here the role of an environment — by a
simpler descriptions representing an abstraction. The variable abstractions im-
plemented in IF were not sufficient for the Ariane-5 model and we have built
manual abstractions, which were still relatively simple, by using the existing de-
composition of the system into a cyclic and an acyclic part and the clear interface
between them.

To illustrate this, we take the example of the safety properties related only to
the acyclic part (flight program and error handling). To prove their correctness,
the cyclic GNC part has been abstracted by eliminating all the internal behavior
and by sending messages (flight phase change commands) at arbitrary moments
rather than at the precise time points computed by the concrete GNC. This
represents clearly an abstraction and it was sufficient to show the satisfaction of
all the properties of the asynchronous part (see [18, 3] for an older experience
concerning this part). Note also that such an abstraction can in principle be
constructed automatically.

Reduction of the duration of the flight phases. In order to validate the properties
related to schedulability and concurrent bus access, we have used an alternative
reduction without behavioral abstraction. As mentioned before, a huge source
of state explosion is the difference of the time scale between the asynchronous
and the cyclic behavior.

Asynchronous events are rare, and the system is working without occurrence
of any asynchronous events during a large number of basic cycles (called stable
phases). Moreover, most of the output of the cyclic part is irrelevant for the
timing properties to be verified. Thus, it is sufficient to perform the proof on a
functional abstraction of the cyclic part with a mission duration much greater
than the basic cycle, but much shorter than the real mission duration.

In stable phases, all executions of the basic cycle in the cyclic part are identical
with respect to the properties to be verified, in particular to the schedulability
of all tasks in all relevant cycles, and to the observation of a certain time window
for the commands sent from the synchronous to the asynchronous part (stable
phases are outside this time window).

This suggests that it is sufficient to verify a reduced model, obtained by a
drastic reduction of the overall flight duration, being careful to make sure that
only stable phases are shortened, whereas all the critical transition phases are
fully explored. The transition phases are defined by the flight phases defined in
the acyclic part and by the occurrence of exception events. Exception events can
occur at any time, but the correctness of the software must only be guaranteed for
2 exceptions for the entire flight, which means that it is enough to make the stable
phases long enough to allow the occurrence of 2 exceptions with subsequent
stabilization.

Using such a reduction of the real duration of the mission, the reachable state
space for the entire flight could be explored, and all the properties could be
finally validated.

60 I. Ober, S. Graf, and D. Lesens

4.3 Results and Figures

In this section, we show the efficiency of the applied reductions. The table in
Fig. 5 shows the verification time and the cardinality of the state space, using
dead variable and partial order reductions, while using different mission dura-
tions (but always respecting the required stabilization times).

Mission duration Nr of states Nr of transitions Verif. time (min)
7 s 51 324 54 697 03:30
15 s 161 956 171 734 12:06
22 s 303 496 321 206 11:33
30 s 463 932 490 901 22:58
37 s 658 981 696 031 34:53

Fig. 5. Complexity for different mission durations (all properties combined)

For the comparison, we have used a model with all the properties (observers)
enabled simultaneously. There is no state explosion caused by the parallel com-
position of all properties, since properties are not completely independent.

A discussion is necessary as the figures presented here may seem low compared
to other known examples in explicit state or symbolic model checking, which
range beyond 107 states. One must consider the following:

– The Ariane-5 model (after UML translation) consists of 77 types of IF pro-
cesses, each having (many) variables of complex types, and sometimes having
dynamically created instances. The footprint of the system state is slightly
variable, with an average of 10KB.
In our view, one cannot compare the 106 order of magnitude of Ariane-5
(for the largest exploration, shown in Fig. 5), with results obtained on other
systems, which may have higher combinatorics but smaller footprints. It is
unfortunately impossible to propose this model as a basis for benchmarking,
due to confidentiality reasons related to its industrial nature.

– Given that the (approximately) 6GB of Ariane’s 658981 states have been
explored on a machine with only 1GB of RAM, we see this as evidence of
the efficiency of the sharing algorithms [4] of the IF exploration platform.

– Another characteristics of the state spaces obtained here is that they are
very narrow and deep (almost a vertical string). This is not because the
example is sequential by nature: concurrency is present in this model and
the combinatorics is potentially very big. The linear form of the state spaces
indicates the efficiency of the partial order reduction of the IF platform.

5 Comparison to Other Approaches, Discussion and
Future Work

Discussion of related work. There exist already a number of tools proposed for
the validation of UML models by translating a subset of UML into the input

Modeling and Validation of a Software Architecture 61

language of some existing validation tool [16, 15, 13, 7, 21, 6, 2, 1] to mention only
a some of the relevant work in the context of real-time and embedded systems.

Like IFx, most of these tools are based on existing model-checkers such as
SPIN [12] (in [16, 15]) or COSPAN [11] (in [21] for non-timed systems, and
Kronos [22] (in [2]) or Uppaal [14] (in [13, 6]) for the verification of systems with
timing constraints. Also the translation into proof-based frameworks, such as
PVS (e.g. in [1]) or B, has been proposed.

With respect to the expressivity of the UML profile accepted, the IFx frame-
work goes beyond other existing ones, as it handles a rich subset of UML, includ-
ing inheritance and dynamic object creation and powerful timing features. Most
of the cited UML validation tools are restricted to static systems, fitting exactly
the model of the underlying model-checker. Also, they usually handle properties
written in the property language proposed by the underlying model-checker. The
Omega UML profile proposes observers for this purpose.

The IFx tool does not push forward the theoretical boundaries of existing veri-
fication technology. However, the tool presents a unique combination of features
which prove to be very efficient in fighting scalability problems encountered
in practice. It includes and combines the on-the-fly exploration of SPIN, the
symbolic representation of time constraints of Kronos and Uppaal, the bisimula-
tion based reduction techniques of Aldebaran [8], and adds verification-targeted
optimizations based on static analysis, as well as support for industry-backed
standards like SDL and UML.

Experience showed that the combination of these techniques allows to obtain
feedback very rapidly on most models without much remodeling and adaptation
effort by the user. Positive verification results required, for the bigger examples,
some effort to find an appropriate property preserving abstraction and to apply
it manually – which is a common limitation of major model-checking tools.

The model structuring concepts present in IF allow to limit the overhead
induced by the translation a rich user level formalism like UML, and also make
the translation more flexible. Consequently, we plan on moving towards UML
2.0 and to system-oriented formalisms like AADL, which are better suited for
modeling architectural and non-functional problems in the space vehicle control
domain.

References

[1] T. Arons, J. Hooman, H. Kugler, A. Pnueli, and M. van der Zwaag. Deductive
verification of UML models in TLPVS. In Proceedings UML 2004, pages 335–349.
LNCS 3273, 2004.

[2] Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. Model checking UML speci-
fications of real time software. In Proceedings of 8th International Conference on
Engineering of Complex Computer Systems. IEEE, 2002.

[3] M. Bozga, D. Lesens, and L. Mounier. Model-Checking Ariane-5 Flight Program.
In Proceedings of FMICS’01 (Paris, France), pages 211–227. INRIA, 2001.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In SFM-04:RT
4th Int. School on Formal Methods for the Design of Computer, Communication
and Software Systems: Real Time, LNCS, June 2004.

62 I. Ober, S. Graf, and D. Lesens

[5] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal
semantics of concurrency and communication in real-time UML. In Proc. of the
1st Symposium on Formal Methods for Components and Objects (FMCO 2002),
volume 2852 of LNCS Tutorials

[6] A. David, O. Möller, and W. Yi. Formal verification UML statecharts with real
time extensions. In Proceedings of FASE 2002 (ETAPS 2002), vol. 2306 of LNCS.
Springer-Verlag, April 2002.

[7] M. del Mar Gallardo, P. Merino, and E. Pimentel. Debugging UML designs with
model checking. Journal of Object Technology, 1(2):101–117, August 2002.

[8] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M.
Sighireanu. CADP - a protocol validation and verification toolbox. In Computer
Aided Verification, 8th Int. Conf. CAV ’96, vol. 1102 of LNCS, 1996.

[9] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis
using two clocks. In 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 2619 of LNCS, 2003.

[10] S. Graf, I. Ober, and I. Ober. Timed annotations in UML. Int. Journal on
Software Tools for Technology Transfer, Springer Verlag, 2006. (In print. Available
on Springer On-line at http://dx.doi.org/10.1007/s10009-005-0219-x).

[11] Z. Har’El and R. P. Kurshan. Software for Analysis of Coordination. In Conference
on System Science Engineering. Pergamon Press, 1988.

[12] G. J. Holzmann. The model-checker SPIN. IEEE Trans. on Software Engineering,
23(5), 1999.

[13] A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines
and collaborations. In 7th Intl. Symp. Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT 2002), volume 2469 of LNCS, September 2002.

[14] K.G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & Developments. In
O. Grumberg, editor, Proceedings of CAV’97 (Haifa, Israel), volume 1254 of
LNCS, pages 456–459. Springer, June 1997.

[15] D. Latella, I. Majzik, and M. Massink. Automatic verification of a behavioral
subset of UML statechart diagrams using the SPiN model-checker. Formal Aspects
of Computing, (11), 1999.

[16] J. Lilius and I.P. Paltor. Formalizing UML state machines for model checking. In
Rumpe France, editor, Proceedings of UML’1999, volume 1723 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

[17] C. L. Liu and J. W. Leyland. Scheduling algorithms for multiprogramming in a
hard real-time environment,. JACM, 20(1):46–61, 1973.

[18] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models
by simulation and verification. Int. Journal on Software Tools for Technology
Transfer, Springer Verlag, 2006. (In print. Available on Springer On-line at
http://dx.doi.org/10.1007/s10009-005-0205-x).

[19] SysML Partners. SysML specification v. 0.9 draft (10 jan. 2005). Available at
http://www.sysml.org/artifacts.htm.

[20] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous
systems. In Formal Methods in System Design 2005, LNCS. Springer Verlag, 2005.

[21] Fei Xie, Vladimir Levin, and James C. Browne. Model checking for an executable
subset of UML. In Proceedings of 16th IEEE International Conference on Auto-
mated Software Engineering (ASE’01). IEEE, 2001.

[22] S. Yovine. Kronos: A verification tool for real-time systems. Springer Interna-
tional Journal of Software Tools for Technology Transfer, 1(1-2), December 1997.

Synchronizing Behavioural Mismatch in
Software Composition�

Carlos Canal1, Pascal Poizat2, and Gwen Salaün3

1 University of Málaga, Department of Computer Science
Campus de Teatinos, 29071 Málaga, Spain

canal@lcc.uma.es
2 IBISC FRE 2873 CNRS – University of Évry Val d’Essonne, Genopole

Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France
Pascal.Poizat@ibisc.univ-evry.fr

3 VASY project, INRIA Rhône-Alpes, France
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France

Gwen.Salaun@inrialpes.fr

Abstract. Software Adaptation is a crucial issue for the development
of a real market of components promoting software reuse. Recent work
in this field has addressed several problems related to interface and be-
havioural mismatch. In this paper, we present our proposal for software
adaptation, which builds on previous work overcoming some of its lim-
itations, and makes a significant advance to solve pending issues. Our
approach is based on the use of synchronous vectors and regular ex-
pressions for governing adaptation rules, and is supported by dedicated
algorithms and tools.

1 Introduction

Component-Based Software Engineering (CBSE) focuses on composition and
reuse, aiming to develop a market of software components, in which customers
select the most appropriate software piece depending on its technical specifica-
tion [6]. The development of such a market has always been one of the major
concerns of Software Engineering, but it has never become a reality. The reason
is that we cannot expect that any given software component perfectly matches
the needs of a system where it is trying to be integrated. Software is never reused
“as it is”, especially in case of legacy code, and a certain degree of adaptation
is always required [16].

To deal with these problems a new discipline, Software Adaptation, which is
emerging, is concerned with providing techniques to arrange already developed
pieces of software, in order to reuse them in new systems [7]. Software Adaptation
promotes the use of adaptors —specific computational entities guaranteeing that
components will interact in the right way.

� This work has been partly funded by the European Network of Excellence on AOSD,
AOSD-Europe IST-2-004349-NOE.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 63–77, 2006.
c© IFIP International Federation for Information Processing 2006

64 C. Canal, P. Poizat, and G. Salaün

CBSE postulates that a component must be reusable from its interface [20],
which in fact constitutes its full technical specification. Hence, we have to provide
components with a specification that helps in the process of adapting and reusing
them. The intended adaptation will then take the form of a mapping among the
interface descriptions of the components involved.

The characteristics and expressiveness of the language used for interface de-
scription determines the degree of interoperability we can achieve using it, and
the kind of problems that can be solved. We can distinguish between several
levels of interoperability, and accordingly of interface description [8]: signature
level (service names and types), behavioural level (interaction protocols), se-
mantic level (functional specification of what the component actually does) and
service level (non functional properties such as quality of service). At each one,
mistmatch can occur [8] and would have to be corrected. Currently, industrial
component models only tackle the signature level, with Interface Description
Languages (IDLs). Although (automatic) adaptation in the semantic and ser-
vice levels still remains uncertain, several approaches have been presented for
extending component interfaces with behaviour, thus resulting in what we may
call a Behavioural IDL (BIDL) (e.g., WSBPEL [1] for web services).

In this paper, we focus on mismatch appearing at the behavioural level. In-
tuitively, it means that two (or more) components cannot —as they are— inter-
act till they reach correct termination states. To compensate such behavioural
incompatibilities, we propose first to use synchronous vectors as the mapping
language to make explicit communications on different message names. Second,
we extend our notation to enable writing regular expressions of vectors. Such a
mapping notation is convenient to describe in an abstract way more advanced
adaptation scenarios such as reordering of messages. Figure 1 gives a graphical
overview of our method for adaptation.

Behavioural adaptation

(Petri net encoding)

(synchronous product)

needed?

no

yes

Component interfaces

mismatch
detected?

no adaptor needed

Adaptor

(vectors + regex)
adaptor specification

A = (v1.v2)*

v2 = <a?,b!>

v1 = <a!,b?>

adaptor
generation

reordering

yes

no

Fig. 1. Overview of our approach for adaptation of incompatible components

The remainder of the paper is organized as follows. Section 2 formally intro-
duces our component interface model, and defines interface mismatch by means
of synchronous products. Section 3 presents our approach to component adap-
tation, which combines the points in favour of different adaptation approaches,

Synchronizing Behavioural Mismatch in Software Composition 65

while trying to overcome their limitations. Our proposals for behavioural adapta-
tion with or without message reordering are supported by dedicated algorithms,
and in both cases the adaptation mappings rely on synchronous vectors. Next,
Section 4 extends our initial mapping notation with regular expressions, enabling
complex policies for applying the adaptation vectors. In Section 5, we survey the
more advanced proposals for software adaptation, and compare ours to them.
Finally, Section 6 draws up the main conclusions of this work and sketches some
future tasks that will be accomplished to extend its results.

2 Interfaces and Mismatch

2.1 Component Interfaces

Component interfaces are given using a signature and a behavioural interface.

Definition 1 (Signature). A signature Σ is a set of operation profiles. This set
is a disjoint union of provided operations and required operations. An operation
profile is simply the name of an operation, together with its argument types, its
return type and the exceptions it raises.

This definition naturally corresponds to the signature definitions in component
based models such as CCM or J2EE. Such signatures are defined using an IDL.
For the sake of simplicity in the presentation, in this paper we do not deal with
operation arguments, return values or exceptions.

We also take into account behavioural interfaces through the use of Labelled
Transition Systems (LTSs).

Definition 2 (LTS). A Labelled Transition System is a tuple (A,S, I, F, T)
where: A is an alphabet (set of events), S is a set of states, I ∈ S is the initial
state, F ⊆ S are final states, and T ⊆ S ×A× S is the transition function.

The alphabet of the LTS is built on the signature. This means that for each pro-
vided operation p in the signature, there is an element p? in the alphabet, and
for each required operation r, an element r!. As in CCS, (a, ā) denote comple-
mentary actions —i.e., if a is p? (respectively r!), then ā is p! (respectively r?).

LTSs are adequate as far as user-friendliness and development of formal al-
gorithms are concerned. However, higher-level behavioural languages such as
process algebras can be used to define behavioural interfaces in a more concise
way. In this paper, we use as a BIDL the part of the CCS notation restricted to
sequential processes which can be translated into LTS models: P ::= 0 | a?.P
| a!.P | P1+P2 | A, where 0 denotes a do-nothing process, a?.P a process
which receives a and then behaves as P, a!.P a process which sends a and then
behaves as P, P1+P2 a process which may act either as P1 or P2, and A denotes
the call to a process defined by an agent definition equation A = P.

As process algebras do not enable to define initial and final states, we extend
this CCS notation to tag processes with initial (i) and final (f) attributes.
Finally, 0 is often omitted in processes (e.g., a!.b![f] is used for a!.b!.0[f]).

66 C. Canal, P. Poizat, and G. Salaün

Example 1. Consider a client that repetitively sends a query and its argument,
and then waits for an acknowledgement, quitting with an end!, and a server
repetitively waiting for a query and a value, then returning a given service:

Client[i] = query!.arg!.ack?.Client + end![f]
Server[i,f] = query?.value?.service!.Server

The LTSs for these two components are given below with initial and final states
respectively marked by input arrows and black circles.

ack?

end!

service!

query? value?arg!query!

Fig. 2. A simple client/server system

2.2 Behavioural Mismatch

Various definition of behavioural mismatch have been proposed in the field of
software adaptation and software architecture analysis [8]. We build on the most
commonly accepted one, namely deadlock-freedom. The first step is to define the
semantics of a system made up of several identified components. This semantics
can be given, following work by Arnold [2] using synchronous product.

Definition 3 (Synchronous Product). The synchronous product of n LTSs
Li = (Ai, Si, Ii, Fi, Ti), i ∈ 1..n, is the LTS (A,S, I, F, T) such that:

– A ⊆ Πi∈1..nAi, S ⊆ Πi∈1..nSi, I = (I1, . . . , In),
– F ⊆ {(s1, . . . , sn) ∈ S |

∧
i∈1..n si ∈ Fi},

– T is defined using the following rule:
∀(s1, . . . , sn) ∈ S, ∀i, j ∈ 1..n, i < j such that
∃(si, a, s

′
i) ∈ Ti, ∃(sj , ā, s

′
j) ∈ Tj, then

(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈ T , where
∀k ∈ 1..n, lk = { a if k = i, ā if k = j, ε otherwise }
xk = { s′i if k = i, s′j if k = j, sk otherwise }

We are now able to characterize behavioural mismatch by means of deadlock.

Definition 4 (Deadlock State). Let L = (A,S, I, F, T) be an LTS. A state
s is a deadlock state for L, noted dead(s), iff it is in S, not in F and has no
outgoing transitions: s ∈ S ∧ s �∈ F∧ � ∃l ∈ A, s′ ∈ S . (s, l, s′) ∈ T .

Definition 5 (Deadlock Mismatch). An LTS L = (A,S, I, F, T) presents a
deadlock mismatch if there is a state s in S such that dead(s).

To check if a system made up of several components presents behavioural mis-
match, its synchronous product is computed and then Definition 5 is used.

Synchronizing Behavioural Mismatch in Software Composition 67

(query!,query?)

Fig. 3. Synchronous product for the client/server system in Figure 2

Example 2. Taking Example 1, we obtain the following synchronous product:

Note that the deadlock is caused by (i) the client required service end! which
has no counterpart in the server, and (ii) name mismatching between the client
required service arg! and the server provided service value?.

We may now define what is a correct adaptor for a system. An adaptor is given
by an LTS which, put into a non-deadlock-free system yields a deadlock-free one.
For this to work, the adaptor has to preempt all the component communications.
Therefore, prior to the adaptation process, component service names may have
to be renamed prefixing them by the component name, e.g., c:service!.

The product we have defined here is common in the community and hence
is supported by tools such as the CADP toolbox [9]. Our deadlock definition
however is slightly different from the one used in these tools, since it has to
distinguish between success (deadlock in a final state), and failure (deadlock in
a non-final state). Mismatch detection can be automatically checked by CADP
up to the adding within component interfaces of specific loop transitions labelled
with accept over final states. Then the EXP.OPEN tool [13] of CADP is used
to perform a full matching product between the component interfaces.

3 Adaptation Based on Synchronous Vectors

3.1 Synchronizing with Vectors

The first thing to solve in adaptation is impossible communication due to dif-
ferent event/message names. Our idea is to use synchronous vectors as a way to
denote a morphism between event names in different components.

Vectors generalize synchronous product by expressing not only synchroniza-
tion between processes on the same event names (a and ā in Definition 3), but
more general correspondences between the events of the process involved.

Definition 6 (Vector). A synchronous vector (or vector for short) for a set of
Id indexed components Li = (Ai, Si, Ii, Fi, Ti), i ∈ Id, is a tuple (ei) with ei ∈
Ai ∪{ε}, ε meaning that a component does not participate in a synchronization.

Note that vectors are simple correspondences between events. Extensions can be
easily defined to consider relations between events with data.

Definition 7 (Synchronous Vector Product). The synchronous vector
product of n LTSs Li = (Ai, Si, Ii, Fi, Ti), i ∈ 1..n with a set of vectors V ,
is the LTS (A,S, I, F, T), denoted by Π(Li, V), such that:

– A ⊆ Πi∈1..nAi, S ⊆ Πi∈1..nSi, I = (I1, . . . , In),
– F ⊆ {(s1, . . . , sn) ∈ S |

∧
i∈1..n si ∈ Fi},

68 C. Canal, P. Poizat, and G. Salaün

– T is defined using the following rule:
((s1, . . . , sn), (l1, . . . , ln), (s′1, . . . , s

′
n)) ∈ T and (s′1, . . . , s

′
n) ∈ S if

∃(s1, . . . , sn) ∈ S and ∃v = (l1, . . . , ln) ∈ V such that,
∀li ∈ v s′i = si if li = ε and ∃(si, li, s

′
i) ∈ Ti otherwise.

3.2 Behavioural Adaptation Without Reordering

We first address adaptation where only event names mismatch is taken into
account, that is impossible communications due to different message names.
Our algorithm takes as input the Id indexed set of components LTSs Li of the
systems and a mapping which is a synchronous vector V .

1. compute the product P = (AP , SP , IP , FP , TP) = Π(Li, V)
2. obtain Prestr = (APrestr , SPrestr , IPrestr , FPrestr , TPrestr) from P recursively re-

moving transitions and states yielding deadlocks: find a state s such that
dead(s), remove s and any transition t with target s, and do this until there
is no more such s in the LTS.

3. from Prestr, build the adaptor A = (APrestr , SPrestr ∪ Sadd, IPrestr , FPrestr , TA)
where Sadd and TA are defined as follows.
For each t = (s = (s1, . . . , sn), (l1, . . . , ln), s′ = (s′1, . . . , s′n)) in TPrestr , let
Lrec = {l? | l! ∈ (l1, . . . , ln)} and Lem = {l! | l? ∈ (l1, . . . , ln)}. Let then
Seqrec be the set of all permutations over Lrec and Seqem be the set of
all permutations over Lem. For each couple (R,E) in Seqrec × Seqem, R =
(r1, . . . , rnr) and E = (e1, . . . , ene), seq = (r1, . . . , rnr, e1, . . . , ene), construct
the transaction

s = q0
seq[1]→ q1 . . . qk

seq[k+1]→ qk+1 . . . qn−1
seq[n]→ s′ = qn

adding each qk∈1..n−1 in Sadd and each qk
seq[k+1]→ qk+1 (k ∈ 0..n) in TA.

This algorithm builds the most general adaptor in the sense that it simulates
any other adaptor for the mismatching system. Its complexity lies mainly in the
synchronous product construction O(|S|n) where S is the largest set of states.

3.3 Behavioural Adaptation with Reordering

Let us now extend the domain of adaptation problems we deal with. The goal is
to also address behavioural mismatch with reordering, that is, the incompatible
ordering of the events exchanged. Indeed, our behavioural adaptation proposal
above would yield an empty adaptor in presence of such behavioural mismatch,
concluding that adaptation is not possible. In this case, the adaptation process
may try to reorder protocol events in-between the components. To this purpose,
we present a second approach which complements the first one. However, it does
not replace it as the process may not agree on message reordering.

This behavioural adaptation approach is based on previous works dedicated
to the analysis of component queue boundedness [14]. In order to accommodate

Synchronizing Behavioural Mismatch in Software Composition 69

behavioural mismatch, the events received by the adaptor are de-synchronized
from their emission. Our algorithm can be simulated by a translation of the
problem into Petri nets [15]. The main advantage of such an approach is that it
is equipped with efficient tools.

We first proceed by constructing a Petri net representation of the assumptions
the components make on their environment (by mirroring their behavioural in-
terfaces), and then build causal dependences between the events received and
sent by the adaptor accordingly to the mapping, given under the form of syn-
chronous vectors. This allows us to build an adaptor which accommodates both
behavioural mismatch (with or without reordering).

1. for each component i with LTS Li, for each state sj ∈ Si, add a place
Control-i-s j

2. for each component i with initial state Ii, put a token in Control-i-I i
3. for each a! in

⋃
i Ai, add a place Rec-a

4. for each a? in
⋃

i Ai, add a place Em-a
5. for each component i with LTS Li, for each (s, l, s′) ∈ Ti:

– add a transition with label l̄, one arc from place Control-i-s to the
transition and one arc from the transition to place Control-i-s’

– if l has the form a! then add one arc from the transition to place Rec-a
– if l has the form a? then add one arc from place Em-a to the transition

6. for each vector v = (l1, . . . , ln) in V :
– add a transition with label tau
– for each li with form a!, add one arc from place Rec-a to the transition
– for each li with form a?, add one arc from the transition to place Em-a

7. for each tuple (f1, . . . , fn), fi ∈ Fi, of final states, add a (loop) accept
transition with arcs from and to each of the tuple fi

Once this Petri net encoding has been performed, we compute its marking
graph. If it is finite (e.g., for non recursive adaptors) then it gives a behavioural
description of the adaptor. If not (it cannot be computed in finite time), then
we compute the coverability graph of the net. Note that due to the overap-
proximation of such a graph, we add a guard [#Em-a>1] (#Em-a meaning the
number of tokens in place Em-a) on any a! transition in this graph leaving a
state where #Em-a is ω. In both cases (marking or coverability graph), step 2 of
the algorithm in Section 3.2 has to be performed on the adaptor obtained. The
complexity of this algorithm lies mainly in the marking or coverability graph
construction which is exponential [17].

This algorithm is supported by tools. We have made successful experiments
with the TINA tool [3] to generate marking and coverability graphs. Our ap-
proach yields graphs which can be too large for a human reader. We simplify the
adaptor LTS passing the resulting output file to CADP and performing a τ ∗ a
reduction on it to remove the meaningless tau transitions it contains.

3.4 Application

We here present an example following the behavioural adaptation technique
above.

70 C. Canal, P. Poizat, and G. Salaün

Example 3. Suppose we have a client Client[i]=req!.arg!.ack?[f] and a
server Server[i]=value?.query?.service![f]with vectors <req!,query?>,
<arg!,value?> and <ack?,service!>. Such an example is typical of clients
and servers which follow different standards for the order of sending subservice
elements. The Petri net encoding (see Section 3.3) of the system is:

Control_c_0

Control_c_2 Control_s_2

Control_s_0

tau

tau

tau

accept

Rec_req

Rec_arg

value!

query!

arg?

Em_query

Em_value

req?

Rec_serviceEm_ack

Control_c_3 Control_s_3

Control_c_1 Control_s_1

ack! service!

Fig. 4. Petri net encoding of a simple client/server system

Computing the marking graph, we obtain an LTS with 13 states and 16 transi-
tions (Fig. 5, left), which once reduced yields the correct adaptor (Fig. 5, right)1.

01

23

4

5 6

789

10 11

12
req?i

arg?

i

i

i

value !

query !

service?

iack !

accept

value !i

i

arg?

4

0

5

1 6

2 3

query !

req?

service?
accept

ack !

arg?

value !

Fig. 5. Initial and reduced adaptor for the client/server system

We want to stress that our adaptation proposal is an automatic process. For
the sake of the presentation, we have shown here a simple example for which
the adaptor could be obtained manually. However, using slightly more complex
1 Note the i which stands in CADP for tau transitions, and the accept loop transitions

which enable the detection of correct final states.

Synchronizing Behavioural Mismatch in Software Composition 71

component protocols, the adaptor becomes too large to be obtained by hand.
Moreover, the use of regular expressions in the next section will increase the
complexity of the adapting process and the need for such automatic techniques.

4 Adaptation Patterns

In this section, we tackle the problem of adaptation mappings which may change
over time. In the following, we present a way to express such mappings using
regular expressions (regex), and then update our algorithms to deal with them.

4.1 Regular Expressions (Regex) of Vectors

First, we introduce the syntax for regex. These will be used in place of the basic
vector mappings we presented in Section 3.

Definition 8 (Vector Regex). Given n LTSs Li = (Ai, Si, Ii, Fi, Ti), and a set
of vectors V = {(eij)}j for their adaptation, with eij ∈ Ai∪{ε}, a (vector) regex
for these LTSs can be generated by the following syntax: R ::= v (VECTOR)|
R1.R2 (SEQUENCE)| R1+R2 (CHOICE)| R* (ITERATION), where R, R1, R2 are
regex, and v is a vector in V

A graphical description such as LTS labelled with vectors might be used instead
of regular expressions to favour readability and user-friendliness of the notation.

Example 4 (Alternating use client). Suppose we have a system formed by one
client C and two servers, S and A:

C[i] = end![f] + req!.arg!.ack?.C,
S[i,f] = value?.query?.service!.S, and
A[i,f] = value?.query?.service!.A.

One may want to express in the adaptation mapping that the client accesses
the two servers alternatively, and not always the same one. For this, we use the
following regex: (vs1.vs2.vs3.va1.va2.va3)*.vend with

vs1 =<req!,query?,ε>, va1 =<req!,ε,query?>, vend =<end!,ε,ε>,
vs2 =<arg!,value?,ε>, va2 =<arg!,ε,value?>,
vs3 =<ack?,service!,ε>, va3 =<ack?,ε,service!>.

Example 5 (Connected vs non connected modes). Suppose a client/server system
where the client C sends its id only once at login time, while the server S requires
an identification every time the client does a request. Here we have:

C[i]=log!.Logged, with
Logged[f]=req!.ack?.Logged, and
S[i,f]=log?.req?.ack!.S

The regex describing the adaptation required is now v0.v2.v3.(v1.v2.v3)* with
v0 =<log!,log?>, v1 =< ε,log?>, v2 =<req!,req?>, v3 =<ack?,ack!>.

72 C. Canal, P. Poizat, and G. Salaün

4.2 Behavioural Adaptation Without Reordering

To be able to update our algorithms for using our new regex mappings2, we first
define how to obtain an LTS from them. This corresponds to the well-known
problem of obtaining an automaton which recognizes the language of a regex [10].
The only difference is that the atoms of our regex are vectors and not elements
of basic alphabets. Instead of using a regex, one may also use directly the LTS
that derives from such regex, (i.e., an LTS where the alphabet corresponds to
vectors).

We then modify the synchronous vector product to take a regex LTS in place
of the vector argument.

Definition 9 (Synchronous Vector Product (with regex LTS)). The syn-
chronous vector product (with regex LTS) of n LTS Li = (Ai, Si, Ii, Fi, Ti),
i ∈ 1..n with a regex LTS LR = (AR, SR, IR, FR, TR), is the LTS (A,S, I, F, T)
such that:

– A ⊆ AR ×Πi∈1..nAi, S ⊆ SR ×Πi∈1..nSi, I = (IR, I1, . . . , In),
– F ⊆ {(sr, s1, . . . , sn) ∈ S | sr ∈ FR ∧

∧
i∈1..n si ∈ Fi},

– T is defined using the following rule:
((sr, s1, . . . , sn), (lr, l1, . . . , ln), (s′r, s

′
1, . . . , s

′
n)) ∈ T and (s′r, s

′
1, . . . , s

′
n) ∈ S

if
∃(sr, s1, . . . , sn) ∈ S and ∃v = (sr, (lr1 , . . . , lrn), s′r) ∈ TR with,
∀lri s′i = si if lri = ε and ∃(si, lri , s

′
i) ∈ Ti otherwise.

To apply the Section 3.2 algorithm we just have now to discard the first element
of the product components, that is, from the LTS L = (A,S, I, F, T) obtain
the LTS L′ =proj(L) = (A′, S′, I ′, F ′, T ′) such that ∀X ∈ {A,S, I, F} X ′ =
{cdr(x) | x ∈ X} and T ′ = {(cdr(s),cdr(l),cdr(s′)) | (s, l, s′) ∈ T } with
cdr((x0, x1, . . . , xn)) = (x1, . . . , xn).

We may now modify the algorithm for behavioural mismatching without re-
odering as presented in Section 3.2. The new algorithm takes as input the Id
indexed set of components LTSs Li of the system and a mapping which is a regex
R (for the set of LTSs). We just have to replace step 1 in this algorithm by:

1. compute the LTS LR for the regex R
2. compute the product PR = (APR , SPR , IPR , FPR , TPR) = Π(LR, Li)
3. compute P =proj(PR)

Its complexity is O(|S|n+1) where S is the largest set of states.

4.3 Behavioural Adaptation with Reordering

Our algorithm for behavioural adaptation with reordering can also be adapted
to deal with regex.
2 Note that our new algorithms would apply to the vector mappings we have defined

in the previous section, just taking the set V = {vi} of vectors as the regex (v1 +
v2 + . . . + vn)∗.

Synchronizing Behavioural Mismatch in Software Composition 73

1. compute the LTS LR = (AR, SR, IR, FR, TR) for the regex R.
2. build the Petri net encoding for the problem as presented in section 3.3,

replacing part 6 with:
– for each state sR in SR, add a place ControlR-s R
– put a token in place ControlR-I R
– for each transition tR = (sR, (l1, . . . , ln), s′R) in TR:

• add a transition with label tau, one arc from place ControlR-s R to
the transition and one arc from the transition to place ControlR-s’ R

• for each li which has the form a!, add one arc from place Rec-a to
the transition

• for each li which has the form a?, add one arc from the transition to
place Em-a

3. in the building of accept transitions, add FR to the Fi taken into account
(final states now correspond to acceptance states of the regex LTS).

The rest of the algorithm (computing marking or coverability graph, and re-
ducing them) is the same. Similarly to Section 3.3, this algorithm is exponential.

4.4 Application

We here develop Example 4 above, following our behavioural adaptation
technique.

Example 6 (Example 4 developed). First note that, as explained before, we re-
name arguments to avoid name clash. We have:

C[i] = c:end![f] + c:req!.c:arg!.c:ack?.C,
S[i,f] = s:value?.s:query?.s:service!.S, and
A[i,f] = a:value?.a:query?.a:service!.A.

To express that the client alternatively uses the two servers we may use the
following regex: R1 =(vs1.vs2.vs3.va1.va2.va3)*.vend with:

vs1 =<c:req!,s:query?,ε>, va1 =<c:req!,ε,a:query?>,
vs2 =<c:arg!,s:value?,ε>, va2 =<c:arg!,ε,a:value?>,
vs3 =<c:ack?,s:service!,ε>, va3 =<c:ack?,ε,a:service!>,
vend =<c:end!,ε,ε>

Note that this mapping is probably overspecified, since it imposes a strict alter-
nation between servers. Instead, one may choose to authorize the client to access
any server it wants. Then, the mapping becomes:

R2 =(vs1.vs2.vs3 + va1.va2.va3)*.vend
We have run both examples and obtained (after reduction) the adaptors in

Fig. 6 (left for R1, and right for R2.) Note that applying step 2 of the algorithm
presented in Section 3.2, the state 1 and the corresponding transition are re-
moved for R1. Both adapters solve the existing mismatch, making the system
deadlock-free.

74 C. Canal, P. Poizat, and G. Salaün

0

12

3 4

56

7

89

10 11

12

13

c:req?

c:end?

:accept

c:arg?

s:value !

s:query !

s:service?

c:ack !

a:value !

a:query !

a:service?

c:req?

c:end?

c:ack !

c:arg?

8

40

10

9

5

1

6

2 7

3
c:req?

c:end?

a:service?

:accept

c:arg? c:arg?

c:arg?

s:value !

s:query !

s:service?

c:ack !

a:value !

s:value !

a:value !

a:query !

Fig. 6. Adaptors obtained for the alternating client/server system

5 Related Work

For a thorough review of the state of the art in Software Adaptation, we refer
to [8]. Here, we will mention only a few works, those more closely related to our
proposal.

As said in the introduction, the need for adaptation may occur at any of the
levels of interoperability described, while currently available component plat-
forms address software adaptation only at the signature level. Hence, most of
the recent proposals for adaptation of software have jumped from the signature
level to the specification and analysis of behavioural interfaces, promoting the
use of BIDLs for describing component protocols.

The foundation for behavioural adaptation was set by Yellin and Strom. In
their seminal paper [21], they introduced formally the notion of adaptor as a
software entity capable of enabling the interoperation of two components with
mismatching behaviour. They used finite state machines to specify component
interactive behaviour, to define a relation of compatibility, and to address the
task of (semi-)automatic adaptor generation.

More recently, in [18], the authors present an adaptation approach as a so-
lution to particular synchronization problems between concurrent components,
for instance one component uses or is accessed by two other components. This
approach is based on algorithms close to the synchronous products we use in
this paper. Moreover, they can solve protocol incompatibilities enabling one of
the involved component to perform several actions before or after several syn-
chronizations with its partners. In comparison, our proposal is more general and
based on a rich notation to deal with possibly complex adaptation scenarios,
whereas their approach works out only precise situations in which mismatch
may happen, without using any mapping language for adaptor specification.

Taking Yellin and Strom’s proposal [21] as a starting point, the work of Brogi
and collaborators (BBCP) [4, 5] presents a methodology for behavioural adapta-
tion. In their proposal, component behaviour is specified using a process algebra
—a subset of the π-calculus—, where service offering/invocation is represented
by input/output actions in the calculus, respectively. The starting point of the
adaptation process is a mapping that states correspondences between services of

Synchronizing Behavioural Mismatch in Software Composition 75

the components being adapted. This mapping can be considered as an abstract
specification of the required adaptor. Then, an adaptor generation algorithm re-
fines the specification given by the mapping into a concrete adaptor implemen-
tation, taking also into account the behavioural interfaces of the components,
which ensures correct interaction between them according to the mapping. The
adaptor is able to accommodate not only syntactical mismatch between service
names, but also the interaction protocols that the components follow (i.e., the
partial ordering in which services are offered/invoked).

Another interesting proposal in this field is that of Inverardi and Tivoli
(IT) [11]. Starting from the specification with MSCs of the components to be
assembled and of the properties that the resulting system should verify (liveness
and safety properties expressed as specific processes), they automatically derive
the adaptor glue code for the set of components in order to obtain a property-
satisfying system. The IT proposal has been extended in [12] with the use of
temporal logic; coordination policies are expressed as LTL properties, and then
translated into Büchi automata.

Our approach addresses system-wide adaptation (i.e., differently from BBCP,
it may involve more than two components). It is based on LTS descriptions
of component behaviour, instead of process algebra as in BBCP. However, we
may also describe behaviours by means of a simple process algebra, and use
its operational semantics to derivate LTSs from it. Differently from IT, we use
synchronous vectors for adaptor specification, playing a similar function than
the mappings rules in BBCP. With that, we are able to perform adaptation of
incompatible events.

With respect to behavioural adaptation, our approach can be considered as
both generative and restrictive [8], since we address behavioural adaptation by
enabling message reordering (as in BBCP), while we also remove incorrect be-
haviour (as in IT). Similarly to both approaches, our main goal is to ensure dead-
lock freedom. However, more complex adaptation policies and properties can be
specified by means of regular expressions. Indeed, the most relevant achievement
of our proposal is this use of regular expressions for imposing additional proper-
ties over mappings. In fact, the semantics of BBCP mappings can be expressed
by combining their different rules (in our case, vectors) in a regular expression by

Table 1. Comparison of Adaptation approaches

criteria IT BBCP our proposal
behavioural descriptions automata proc. algebra LTS or proc. algebra

properties no deadlock, no deadlock no deadlock
LTL properties — regular expressions

mappings/adaptor abstraction yes yes yes
name mismatch no yes yes

data types no yes no
message reordering no yes yes

system-wide adaptation yes no yes

76 C. Canal, P. Poizat, and G. Salaün

means of the choice (+) operator. On the contrary, our regex are much more ex-
pressive, solving the problem of BBCP underspecified mappings [4], and allowing
to take into account a new class of adaptation problems.

In Table 1 we give a synthesis of the features of our approach compared to
IT and BBCP.

6 Conclusion

Software Adaptation has become a crucial issue for the development of a real
market of components enhancing software reuse, especially when dealing with
legacy systems. Recent research work in this field —in particular that of BBCP
and IT [4, 5, 11, 12]— has addressed several problems related to signature and
behavioural mismatch. In this paper, we have shown our proposal for software
adaptation based on a notation, namely regular expressions of synchronous vec-
tors, and equipped with algorithms and tools. It builds on BBCP and IT previous
works, overcoming some of their limitations, and making a significant advance
to solve some of the pending issues.

There are still some open issues in our proposal, deserving future work. First,
and differently from BBCP, we do not deal with data types, nor with one-to-many
correspondences between services. Taking data into account would require more
expressive models than LTSs, such as Symbolic Transition Systems (STSs) [14].
This is a perspective for our work, since it allows the description of the data
involved in the operations within the protocol without suffering from the state
explosion problem that usually occurs in process algebraic approaches.

With respect to one-to-many correspondences between services (one of the
strong points in favour of the BBCP proposal), we intend to explore how regular
expressions can be used for that purpose. More expressive models for mappings,
such as non-regular protocols [19], could also be extended to vectors in order
to get a bigger class of properties expressible at the adaptor level (e.g., load-
balancing adaptation of the access of clients to servers).

Finally, we intend to implement our adaptation algorithms in ETS, an Eclipse
plug-in that we have developed for the experimentation over LTS and STS.

Acknowledgements. The authors thank Bernard Berthomieu, Frédéric Lang,
and Massimo Tivoli for their interesting comments and fruitful discussions.

References

1. T. Andrews et al. Business Process Execution Language for Web Services (WS-
BPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems, Feb. 2005.

2. A. Arnold. Finite Transition Systems. International Series in Computer Science.
Prentice-Hall, 1994.

3. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The Tool TINA – Construction of
Abstract State Spaces for Petri Nets and Time Petri Nets. International Journal
of Production Research, 42(14), 2004.

Synchronizing Behavioural Mismatch in Software Composition 77

4. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-
tion. Journal of Systems and Software, 74(1):45–54, 2005.

5. A. Brogi, C. Canal, and E. Pimentel. Component Adaptation Through Flexible
Subservicing. Science of Computer Programming, 2006. To appear. A previous
version of this work was published as Soft Component Adaptation, ENTCS 85(3),
Elsevier, 2004.

6. A. W. Brown and K. C. Wallnau. The Current State of CBSE. IEEE Software,
15(5):37–47, 1998.

7. C. Canal, J. M. Murillo, and P. Poizat. Coordination and Adaptation Techniques
for Software Entities. In ECOOP 2004 Workshop Reader, volume 3344 of Lecture
Notes in Computer Science, pages 133–147. Springer, 2004.

8. C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet. Special
Issue on Coordination and Adaptation Techniques, 12(1):9–31, 2006.

9. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

10. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

11. P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

12. P. Inverardi and M. Tivoli. Software Architecture for Correct Components Assem-
bly. In Formal Methods for Software Architectures, volume 2804 of Lecture Notes
in Computer Science, pages 92–121. Springer, 2003.

13. F. Lang. Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In Integrated Formal Methods (IFM’2005),
volume 3771 of Lecture Notes in Computer Science, pages 70–88. Springer, 2005.

14. O. Maréchal, P. Poizat, and J.-C. Royer. Checking Asynchronously Communicating
Components using Symbolic Transition Systems. In Proc. of the International
Symposium on Distributed Objects and Applications (DOA’2004), volume 3291 of
Lecture Notes in Computer Science, pages 1502–1519. Springer, 2004.

15. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

16. O. Nierstrasz and T. D. Meijler. Research Directions in Software Composition.
ACM Computing Surveys, 27(2):262–264, 1995.

17. C. Rackoff. The Covering and Boundedness Problems for Vector Addition Systems.
Theoretical Computer Science, 6:223–231, 1978.

18. H. W. Schmidt and R. H. Reussner. Generating Adapters for Concurrent Compo-
nent Protocol Synchronization. In Proc. of the 5th Int. Conf. on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’02), pages 213–229. Kluwer
Academic Publishers, 2002.

19. M. Südholt. A Model of Components with Non-regular Protocols. In Proc. of
Software Composition (SC’05), volume 3628 of Lecture Notes in Computer Science,
pages 99–113. Springer, 2005.

20. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

21. D. M. Yellin and R. E. Strom. Protocol Specifications and Components Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

Static Safety for an Actor Dedicated Process Calculus by
Abstract Interpretation

Pierre-Loı̈c Garoche, Marc Pantel, and Xavier Thirioux

IRIT, Toulouse
{garoche, pantel, thirioux}@enseeiht.fr

Abstract. The actor model eases the definition of concurrent programs with non
uniform behaviors. Static analysis of such a model was previously done in a data-
flow oriented way, with type systems. This approach was based on constraint set
resolution and was not able to deal with precise properties for communications of
behaviors. We present here a new approach, control-flow oriented, based on the
abstract interpretation framework, able to deal with communication of behaviors.
Within our new analyses, we are able to verify most of the previous properties we
observed as well as new ones, principally based on occurrence counting.

1 Introduction

1.1 Context – Motivation

The development of the telecommunication industry and the generalization of network
use bring concurrent and distributed programming in the limelight. In that context, pro-
gramming is a hard task and, generally, the resulting applications contain much more
bugs than usual centralized software. As sequential object oriented programming is
commonly accepted as a good way to build software, concurrent object oriented pro-
gramming seems to be well-suited for programming distributed systems. Since non-
determinism resulting from network communications makes it difficult to validate any
distributed functionality using informal approaches, our work is focused on applying
formal methods to improve concurrent object oriented programming.

To obtain widely usable tools, we have chosen to use the actor model proposed by
HEWITT [19] and developed by AGHA [1]. This model is based on a network of au-
tonomous and cooperative agents (called actors), which encapsulate data and programs,
communicating using an asynchronous point to point protocol. An actor stores each
received message in a queue and when idle, processes the first message it can handle
in this queue. Besides those conventions (which are also true for concurrent objects),
an actor can dynamically change its interface. This property allows to increase or de-
crease the set of messages an actor may handle, yielding a more accurate programming
model. This model, also known as concurrent objects with non uniform behavior (or
interface), has been adopted by the telecommunication industry for the development of
distributed and concurrent applications for the Open Distributed Computing framework
(ITU X901-X904) and the Object Description Language (TINA-C extension of OMG
IDL with multiple interfaces). Until now, we have been designing several analyses for
an actor model, all of which based on typing systems. Our main objective was, and still

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 78–92, 2006.
c© IFIP International Federation for Information Processing 2006

Static Safety for an Actor Dedicated Process Calculus 79

is, to detect in a most accurate way typical flaws of distributed applications, like for
instance communication deadlock or non linearity (i.e. the fact that several distributed
actors have the same address). Due to limitations of our previous attempts, which we
could somehow overcome but at the price of a much greater complexity unmatched with
only a small gain in precision, we decided to move to the framework of abstract inter-
pretation, whose tools and ideas have now significantly grown in maturity and are being
widely used in industrial contexts, or are on the verge of being so. We now investigate
these techniques in order to capture our long standing properties of interest (detection
of orphan messages, that is messages sent to an actor which will not handled them) as
well as new ones, especially dedicated to control of resources’ usage.

In a first section, we define our actor calculus. Then in the second part, we introduce
our non standard semantics upon which we define, in the third part, an abstraction.
Finally, in the last part, we explain how to use the abstraction to observe properties
about an analyzed term.

1.2 Related Works

Concerning concurrent objects and actors with uniform or non-uniform behaviors, and
more generally process calculi, typing systems (usually related to data-flow like anal-
ysis) have been the subject of active research. Two opposite approaches have been fol-
lowed: type declaration and type inference. In the first case, most proposals make use
of types as processes of a simple algebra, for instance CCS (Calculus of Communi-
cating Systems) processes. This allows a form of subtyping through simulation rela-
tions or language containment. The works of KOBAYASHI et al. [20, 22], RAVARA et
al. [28], NAJM et al. [4, 23], PUNTIGAM [26], and HENNESSY et al. [18] follow this
line of thought, to which we can add the works of RAJAMANI et al. [5, 27], bringing
model-checking issues for those processes-as-types in the scope. The second case is
again twofold: on one side we have unification based typing algorithms focusing on re-
sources’ usage control witnessed by the works of FOURNET et al. [16] and BOUDOL et
al. [3], whereas on the other side we have flow based algorithms, related to behavior and
communication patterns reconstruction, advocated by the works of NIELSON et al. [2]
and PANTEL et al. [6, 8, 9]. Explicit typing may provide more precise information but
are sometimes very hard to write for the programmer (they might be much more com-
plex than the program itself). Implicit typing requires less user supplied information but
lead to less precise results.

One drawback of type-based analyses is that they are mainly concerned with data-
flow analyses (as types basically represent sets of possible values for variables). In
this context, control flow analyses can be mimicked with sophisticated encodings [24]
but abstract interpretation seems to be more adequate in this respect. It has been re-
cently applied with success to concurrent and distributed programming by the work of
VENET [29] and later FERET [14, 15].

2 CAP: A Primitive Actor Calculus

In order to ease the definition of static analysis for actor based programming, we pro-
posed, in 96, the CAP primitive actor calculus [7], which merge asynchronousπ-calculus

80 P.-L. Garoche, M. Pantel, and X. Thirioux

and CARDELLI’s Primitive Object Calculus. The following example illustrates both
replication and behavior passing mechanisms of CAP. The ν operator defines two ad-
dresses, a and b, then two actors denoted by program points 1 and 7 are defined on those
addresses with the behavior set respectively denoted by 2 and 4 for a and 8 for b.

At this point the actor 1 can handle messages called m or send when b can only
handle beh messages.

νaα,bβ, a �1 [m2() = ζ(e,s)(a �3 s),
send4(x) = ζ(e,s)(x �5 beh(s))]

|| a �6 send(b)
|| b �7 [beh8(x) = ζ(e,s)(e �9 x)]
|| b �10 m()

There are also two messages in the initial configuration. One is labeled send and is sent
to a, the other one is labeled m and is sent to b. In the initial configuration, there is only
one possible interaction, in which the actor a handles the message send. The message m
is an orphan one: it is in the configuration but cannot be handled for the moment. After
one interaction between a and the message send, the message beh which argument is
the behavior’s set of a is sent to b. Thus b can handle that message. In its continuation,
the actor b assumes the behavior’s set of a. Thus b can now handle the message m. This
example shows how to send a behavior to another actor. Such a mechanism increases
the difficulty of statically inferring properties. Stuck-freeness, i.e. the detection of the
set of permanent orphans messages, or linearity, i.e. verifying that at most one actor is
associated to a particular address at the same time, are harder to statically infer when
we allow behavior passing. This point was one of the constraints which led us to switch
from type based analysis to abstract interpretation.

2.1 Syntax and Semantics

Let N be an infinite set of actor names, V be an infinite set of variables. Let Lm be
a set of message labels, Lp be the set of program point labels and Ln be the set of
name labels. In the following, we denote Lp∪Ln by L . The syntax of configurations
is described as follows:

C ::= 0 | νaα C | C || C | a �l P | a �l m(P̃)

P ::= x | [mli
i (Ṽar) = ζ(e,s)Ci

i=1...n
]

Configurations can be an empty process, a creation of actor’s address, parallel execu-
tion, an actor on address a with behavior defined by P and, finally, a message sent to
an address a with arguments P̃. Program points define messages, behaviors’ installation
or external choices between some actors’ behaviors. They will be used to build traces
of the execution control flow. Name restriction, in the configuration (νaα)C, acts as a
name binder, so does the ζ operator and the message label for variables in the behav-

ior description of an actor, i.e. in the behavior [mli
i (x̃i) = ζ(ei,si)Ci

i=1...n
] , therefore the

occurrences of a in C, x̃i in ζ(ei,si)Ci and ei and si in Ci are bound. The ζ operator is
our reflexivity operator, it catches both address and behavior of its actor and allows to
re-use them in the behavior. We denote by F N (C) the set of free names in C and by

Static Safety for an Actor Dedicated Process Calculus 81

T = [mli
i (x̃i) = ζ(ei,si)Ci

i=1,...,n
]

⎧⎨⎩
m = mk,

length(T̃l) = length(x̃k),
k ∈ [1, . . . ,n]

a � T || a �l m(T̃l)
comm(l,lk)−−−−−−→Ck[ek ← a,sk ← T, x̃k ← T̃l]

In order to distinguish transitions, we label the interacting parts of terms. Here the message has
label l and the matching behavior label lk.

Fig. 1. Transition rule of CAP standard semantics

C ≡ D C α-convertible to D (α−conversion)
C||0 ≡ C (inaction)
C||D ≡ D||C (commutativity)

(C||D)||E ≡ C||(D||E) (associativity)
(νa)∅ ≡ ∅ (garbage collecting)
T � T1 ≡ T � T2 if T1 ≡ T2 (behavior equivalence)

(νa)(νb)C ≡ (νb)(νa)C if a �= b (swapping)
(νa)C||D ≡ (νa)(C||D) if a /∈ F N (D) (extrusion)

Fig. 2. Congruence relation of CAP standard semantics

F V (C) the set of free variables. The standard semantics of CAP was defined, la Mil-
ner, by both the usual transition rule (cf. Fig. 1) and the congruence relation (cf. Fig. 2).

3 Non Standard Semantics

In order to ease the definition of abstract interpretations, we need to define define, in this
section, another semantics for CAP and prove it bisimilar to standard CAP semantics.
The non standard semantics allows us to label each process with the history of transi-
tions which led to both its creation and the creation of its values. Our work is based on
a generic non standard semantics which has been defined by FERET [14, 15] to model
first order process calculi as π-calculus, spi-calculus, Ambients, Bio-ambients calculus.
We also describe in this section how we adapt this general framework to express the
CAP language which has a notion of higher order due to its behavior passing and re-
flexivity mechanism (ζ operator). We then briefly describe the operational semantics of
the generic non standard semantics.

A configuration of a system, in this semantics, is a set of threads. Each thread t is a
triple defined as t = (p, id,E) ∈Lp×M × (V �→ (L ×M)) where p is the program
point representing the thread in the CAP term, id is the history marker, also called
its identity, and E its environment. This environment is a partial map from a variable
to a pair (value,marker). Each marker is a word on program points representing the
history of transitions which led to the creation of values or threads. It is required in
order to differentiate recursive instances of a value or thread. All threads with the same
program point have an environment defined on the same domain, called the program
point interface.

82 P.-L. Garoche, M. Pantel, and X. Thirioux

We will describe some primitives that allow us to define the non standard semantics,
then, briefly, we show how to compute transitions in this semantics.

3.1 Partial Interactions

We associate to each program point a partial interaction which defines how threads
related to this program point can interact with others. We also define the set of variables
associated to each thread, constituting its environment, according to its program point.
Here, in CAP, partial interactions can represent a syntactically defined actor, a dynamic
one (an actor whose behavior is defined by a variable) and a particular behavior of an
actor or a sent message.

We thus define the set of partial interactions names A = {static actorn,behaviorn,
messagen | n ∈ N}∪{dynamic actor} and their arities as follows:

Ari = {static actorn �→ (2,n),dynamic actor �→ (2,0),behaviorn �→ (1,n + 2),
messagen �→ (n + 2,0)}

Partial interaction arities define the number of parameters and the number of bound
variables.

The partial interaction dynamic actor denotes a thread representing an actor. It is
consumed when interacting. It has only two parameters: its name and set of behaviors.
It binds no variables.

Both partial interaction static actorn and behaviorn denote a particular behavior of
an actor. The first one is associated to an address when the second one is alone and
can be used with a dynamic actor. The second one acts as a definition and stays in
the configuration when used, whereas the first one is deleted. They are parametrized
by their message labels and binds n + 2 variables, the variables under the ζ operator
expressing reflexivity as well as the parameters of the message it can handle. The first
one is also parametrized by its actor’s name.

Finally the partial interaction messagen represents the message that is sent to a partic-
ular address (actor). So it has n+2 parameters: one for the address, one for the message
name and n for the variables of this message. It is consumed when interacting.

We associate to each partial interaction a type denoting whether such a partial inter-
action is consumed or not when interacting.

3.2 Abstract Syntax Extraction

We now define the syntax extraction function that takes a CAP term describing the
initial state of an agents’ system in the standard syntax and extracts its abstract syntax.

We map each program point labeled l ∈Lp to a set of partial interaction and to an
interface.

A partial interaction pi is given by a tuple (s,(parameteri),(boundi),constraints,
continuation) where s ∈ A is a partial interaction name, (m,n) = Ari(s) its arity,
(parameteri) ∈ V m its finite sequence of variables (Xi), (boundi) ∈ V n its finite se-
quence of distinct variables (Yi), constraints ⊆ {v � v′ | (v,v′) ∈ V 2,� ∈ {=, �=}} its
synchronization constraints and finally continuation∈℘(Lp×(V →L)) its syntactic
continuation. We will check constraints defined in the set constrains about thread en-
vironment with the use of the sequence (parameteri), then we will use both sequences

Static Safety for an Actor Dedicated Process Calculus 83

(parameteri) and (boundi) to compute value passing, finally we will deal with the set
continuation to determine which threads have to be inserted in the system.

– the label of a program point a �l [mli
i (x̃i) = ζ(ei,si)Ci

1≤i≤m
] is associated to the

interface {a} and to the following set of partial interactions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{
(static actorn, [a,m1], [e1,s1, x̃1],β(C1,Ø))

}{
(static actorn, [a,m2], [e2,s2, x̃2],β(C2,Ø))

}
. . .{

(static actorn, [a,mm], [em,sm, x̃m],β(Cm,Ø))
}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
– the label of a program point a �l x is associated to the interface {a,x} and to the

following set of partial interactions:
{
(dynamic actor, [a,x],Ø,Ø)

}
– the label of a program point a �l m(P̃) is associated to the interface {a}∪F V (P̃)

and to the following set of partial interactions:
{
(messagen, [a;m; P̃], Ø,Ø)

}
– the label of a program point li corresponding to a particular behavior of an actor

i.e. mli
i (x̃) = ζ(ei,si)Ci is associated to the interface F V (Ci) \ {ei,si} and to the

following set of partial interactions:
{
(behaviorn, [mi], [ei,si, x̃], β(Ci,Ø))

}
Finally, the syntax extraction function β is defined inductively over the standard syntax
of the syntactic continuation, as follows:

β((νaα)C,Es) = β(C,Es[a �→ α])
β(Ø,Es) = {Ø}

β(C1||C2,Es) = β(C1,Es)∪β(C2,Es)
β(a �l [mli

i (x̃i) = ζ(ei,si)Ci
i=1,...,n],Es) = {(l,Es)}∪

⋃
i=1,...,n {(li,Es)}

β(a �l B,Es) = {{(l,Es)}}
β(a �l m(P̃),Es) = {{(l,Es)}}

The initial state for a term S is described by inits, a set of potential continuations in
℘(℘(Lp× (V →L))) defined as β(S ,Ø).

3.3 Formal Rules

We now define the formal rules that drive the interaction between threads. In the case
of CAP, we have two rules that describe an actor handling a message, depending on the
kind of actor we have, a static or a dynamic one.

In the following, the i-th parameter, the j-th bounded variable, and the identity of
the k-th partial interaction are respectively denoted by Xk

i , Y k
j and Ik. We define the

endomorphism behavior set on the set Lp×M as follows: (p,m) �→ (p′,m) where
p is a behavior program point and p′ is the program point where p has been syn-
tactically defined. As an example, in the term ναa,a �1 [m2() = ζ(e,s)C], we have
behavior set(2,m) = (1,m).

84 P.-L. Garoche, M. Pantel, and X. Thirioux

Communication with a syntactic defined actor. The first rule needs two threads, the first
one must denote a partial interaction static actor when the second one must denote a
partial interaction messagen. We both check that the actor’s address (X1

1) is equal to the
message’s receiver (X2

1) and that the actor behavior label (X1
2) is equal to the message

label (X2
2).

We then define v passing that describe the value passing due to both the ζ operator
and message handling.

static transn = (2,components,compatibility,v passing)

where

1. components =
{

1 �→ static actorn,
2 �→ messagen

2. compatibility =
{

X1
1 = X2

1 ;
X1

2 = X2
2 ;

3. v passing =

⎧⎨⎩
Y 1

1 ← X1
1 ;

Y 1
2 ← I1;

Y 1
i+2 ← X2

i+2,∀i ∈ �1;n�;

Communication with a dynamic actor. The second rule needs three threads: the first
one must denote a partial interaction behaviorn, the second one a partial interaction
dynamic actor and the third one a message messagen. We check the equality between
actor’s address (X2

1) and receiver (X3
1), behavior label (X1

1) and message label (X3
2).

With the behavior set function we check the link between the behavior and the actor.
The value passing is defined in the same way as in the first rule.

dynamic transn = (3,components,compatibility,v passing)

where

1. components=

⎧⎨⎩
1 �→ behaviorn,
2 �→ dynamic actor,
3 �→messagen

2. compatibility=

⎧⎨⎩
X2

1 = X3
1 ;

behavior set(I1)=X2
2 ;

X1
1 = X3

2 ;

3. v passing =

⎧⎨⎩
Y 1

1 ← X2
1 ;

Y 1
2 ← X2

2 ;
Y 1

i+2 ← X3
i+2,∀i ∈ �1;n�;

3.4 Operational Semantics

We now briefly describe how to use the preceding definitions to express in the non
standard syntax both an initial term and the computation of a transition according to a
formal rule.

Initial configurations are obtained by launching a continuation in inits with an empty
marker and an empty environment. That means inserting in an empty configuration,
one thread for each pair (p,Es) in β(inits) where each value in Es is associated with an
empty marker. We focus now on the interaction computation according to one of the
two rules. First of all, we have to find some correct interaction. It means that we have to
find some threads in the current configuration that can be associated to the right partial
interaction according to the matching formal rule. Then we check that their interface
satisfies the synchronization constraints. Thus we can compute the interaction:

Static Safety for an Actor Dedicated Process Calculus 85

– we remove interacting threads according to the type of their exhibited partial
interaction;

– we choose a syntactic continuation for each thread;
– we compute dynamic data for each of these continuations:

• we compute the marker;
• we take into account name passing;
• we create fresh variables and associate them with the correct values;
• we restrict the environment according to the interface associated with the pro-

gram point.

3.5 Correspondence

Theorem 1 (correspondence). CAP standard semantics and its non standard seman-
tics are in strong bisimulation

Proof. The proof can be found at the first author’s web page, www.enseeiht.fr/ garoche.

3.6 Example

To illustrate the use of the non standard semantics, we will compute the first transition
of the example given in section 2.

The initial configuration1 is:

(1,ε,
[

a �→ α,ε
]
) (2,ε,

[
a �→ α,ε

]
) (4,ε, []) (6,ε,

[
a �→ α,ε
b �→ β,ε

]
)

(7,ε,
[

b �→ β,ε
]
) (8,ε, []) (10,ε,

[
b �→ β,ε

]
)

At this point, the only possible transition is labeled by 1,6 and corresponds to the
static transn rule. Program point 1 is able to exhibit the two following partial inter-

actions:

⎧⎨⎩
{

(static actorn, [a,m], [e,s],β(a �3 s,Ø))
}
,{

(static actorn, [a,send], [e,s,x],β(x �5 beh(s),Ø))
}⎫⎬⎭ when the program

point 6 exhibits the only partial interaction:{
(messagen, [a,send,b],Ø,Ø)

}
We choose the first partial interaction for 1. We first check synchronization con-

straints. We need that X1
1 = X2

1 and X1
2 = X2

2 . So (α,ε) = (α,ε) and both message share
the same label send. We can now compute value passing, thread launching and remov-
ing. We have to remove interacting threads and to add threads in β(x �5 beh(s),Ø)
with their environment updated by value passing. Value passing gives the value of
e, s and x, we have respectively, (α,ε), (1,ε) and (β,ε). Thus the launched thread is

(5,ε,
[

x �→ β,ε
s �→ 1,ε

]
).

1 We can notice the absence of threads at program points 3, 5 and 9 which correspond to sub-
terms. There are not present in the initial configuration.

86 P.-L. Garoche, M. Pantel, and X. Thirioux

We obtain the new configuration:

(2,ε,
[

a �→ α,ε
]
) (4,ε, []) (5,ε,

[
x �→ β,ε
s �→ 1,ε

]
)

(7,ε,
[

b �→ β,ε
]
) (8,ε, []) (10,ε,

[
b �→ β,ε

]
)

We recall that when computing a transition using the dynamic transn rule, new
launched threads are associated to a new marker.

4 Abstract Semantics

In order to ensure properties on all the possible execution of the non standard semantics,
we rely on the abstract interpretation approach which combines in a single one all the
possible executions.

4.1 Abstract Interpretation

Abstract interpretation [10] is a theory of discrete approximation of semantics. A fun-
damental aspect of this theory is that every semantics can be expressed as fixed points
of monotonic operators on complete partial orders. A concrete semantics is defined by
a tuple (S,⊆,⊥,∪,!,∩). Following [11], an abstract semantics is defined by a pre-
ordered set (S#,#), an abstract iteration basis ⊥#, a concretization function γ : S# → S
and an abstract semantics function F#.

Abstract Interpretation of Mobile Systems. We approximate here the mobile sys-
tems’ semantics as described in [15, 29]. The collecting semantics of a configuration
C0 is defined as the least fixed point of the complete join morphism F:

F(X) = ({ε}×C0)∪
{

(u.λ,C′) ∃C ∈S ,(u,C) ∈ X and C
λ−→C′
}

An abstraction
(
C #,##,$#,⊥#, γ#,C#

0 ,�,∇
)

in this framework must define as usual
a pre-order, a join operator, a bottom element, a widening operator (when abstract do-
mains are infinite) as well as:

– the initial abstract configuration C#
0 ∈ C # with {ε}×C0 ⊆ γ(C#

0)
– the abstract transition relation � ∈℘(C #×Σ×C #) such that:
∀C# ∈ C #,∀(u,C) ∈ γ(C#),∀λ ∈ Σ,∀C′ ∈ C ,

C
λ−→C′ =⇒ ∃C′# ∈ C #,(C# λ� C′#) and (u.λ,C′) ∈ γ(C′#)

Such an abstract transition computes all the concrete transitions labeled λ from all
possible C represented by C#.

The abstract counterpart of the F function is the abstract function F# defined as:

F#(C#) =
⊔# ({C′# | ∃λ ∈ Σ,C# �λ C′#

}
${C#

0;C#}
)

Static Safety for an Actor Dedicated Process Calculus 87

4.2 Abstract Domains

An element of an abstract domain expresses the set of invariant properties of a set of
terms. We project the initial term into an abstract element to describe its properties.
Then we use an abstract counterpart of the transition rules to obtain the set of valid
properties when applying the transition rule to all elements of the initial set. Then we
compute the union of both abstract elements, to only keep the set of properties which
are valid before and after the transition. We repeat these steps until a fixed point is
reached. The use of the union and the widening functions guarantees the monotony of
the transition and thus the existence of the fixed point. Finally, we obtain an abstract el-
ement describing the set of valid properties in all possible evolutions of the initial term.
It is a post fixed point of the collecting semantics’ least fixed point. Our abstractions are
sound counterparts of the non standard semantics.

In order to avoid a too coarse approximation of the collecting semantics, we need,
at least, to use a good abstraction of the control flow. We associate to each program
point an abstract element describing its set of values and markers. But, most of our
properties can be expressed in terms of occurrence counting. We also need to ap-
proximate configurations globally. Therefore, we use, as an abstract domain, the
cartesian product of an abstract domain to approximate non uniform control flow in-
formation in conjunction with a domain to approximate the occurrence of threads in
configurations.

Generic Abstractions. In this section, we will briefly describe the two abstract do-
mains defined, by FERET, respectively in [13] and [12] that are used to approximate the
non standard semantics of CAP. Their operational semantics is then given in Figs. 3(a)
and 3(b).

Control Flow Abstract Domain. This abstract domain approximates variable values of
thread environments as well as their marker for a given configuration. It is parametrized
by an abstract domain called an Atom Domain. We associate to each program point
an atom which describes the values of both variables and markers of the threads that
can be associated with this program point. When computing an interaction, we merge
the interacting atoms associated to the interacting threads (primitive reagents#) and add
synchronization constraints (primitive sync#). If they are satisfiable, the interaction is
possible. We then compute the value passing and the marker computation (function
marker value). Finally, we launch new threads (primitive launch#) and update the atom
of each program point by computing its union with the appropriate resulting atom.

In this domain, we only focus on values, so we completely abstract away occurrences
of threads and thus deletion of interacting threads.

The Atom Domain we use is a reduced product of four domains. The first two rep-
resent equality and disequality among values and marker using graphs, the third one
approximates the shape of markers and values with an automaton and the fourth one
approximates the relationship between occurrences of letters in Parikh’s vectors [25]
associated to each value and marker.

Occurrence Counting Abstract Domain. In this domain, we count both threads associ-
ated to a particular program point and transition label, the set of which is denoted by

88 P.-L. Garoche, M. Pantel, and X. Thirioux

Let C# be an abstract configuration, let (pk)1≤k≤n ∈Lp be a tuple of program points label and
(pik)1≤k≤n = (sk,(parameterk),(bdk),constraintsk ,continuationk) be a tuple of partial interac-
tions.

We define mol by reagents#((pk),(parameterk,l),(constraintsk),C#).
When
∀k ∈ �1;n�, pik ∈ interaction(pk) ;
mol �=⊥(I(pk))k

Then

C
(pk)k−−−→#

⊔{C;mol;new threads}
Where
1. mol′ = marker value((pk)k,mol,(bdk,l)k,l ,(parameterk,l)k,l , v passing)
2. new threads = launch#((pk,continuationsk)k,mol′).

(a) Abstract semantics for control flow approximation

We define the tuple t ∈NVc so that tv be the occurrence of v in (pk)1≤k≤n.
When
∀k ∈ �1;n�, pik ∈ interaction(pk) ; SY NCNVc

(t,C#) �=⊥NVc

Then

C
(pk)k−−−→#SY NCNVc

(t,C#)+# Transition+# Launched−# Consumed
Where
1. Transition = 1NVc

(p1);
2. Launched = Σ#

(
(β#(continuationk))k

)
;

3. Consumed = Σ#(1NVc
(pk))k∈{k′|1≤k′≤n,type(sk′) �=replication}

(b) Abstract semantics for occurrence counting

Fig. 3. Abstract operational semantics

Vc. We first approximate the non standard semantics by the domain NVc associating to
each program point its threads occurrence in the configuration and to each transition
label, its occurrence in the word that leads to the configuration. At the level of the col-
lecting semantics, we obtain an element in ℘(NVc). We then abstract such a domain
by a domain NVc which is a reduced product between the domain of intervals indexed
by Vc and the domain of affine equalities [21] constructed over Vc. When computing a
transition, we check that the occurrences of interacting threads are sufficient to allow
it (primitive SYNCNVc

). If we do not obtain the bottom element of our abstract do-
main, i.e. the synchronization constraint is satisfiable, we add (primitive +#) the new
transition label, the launched threads (primitives β# and Σ#) and remove (primitive−#)
consumed threads.

5 Properties

The abstract semantics computes an approximation of all the execution in the non stan-
dard one. Its result can then be used in order to check many different properties. In this
section, we describe interesting properties and how to observe them in the fixed point
of the analysis.

Static Safety for an Actor Dedicated Process Calculus 89

5.1 Linearity

Linearity is a property that expresses the fact that all actors in each possible configu-
ration are bound to different addresses. It can be expressed as in π-calculus when each
process listens to at most one channel. It is a useful property to map addresses to re-
sources.

Our analysis is able to prove that a term, without recursive name definitions, i.e. with-
out a ν operator inside a behavior continuation, will be linear in all the possible config-
urations it will take. We can observe such a property with both the control flow domain
and the occurrence counting domain. We first determine with the control flow the up-
per set of program points representing actors that can be associated with each address.
Then we check in the occurrence counting domain that each of those program points
is mapped to at most one thread in each configuration (within the interval domain)
and, moreover, that program points that can be associated with the same address are
in mutual exclusion (with the global numerical domain). The mutual exclusion prop-
erty is observed by exhibiting a constraint from the global numerical domain. Such a
constraint must be a linear combination Σxi + Σk j ∗ y j = 1 with {xi} the set of program
points in mutual exclusion and {k j} a set of positive or null coefficients. Whether such
a constraint can be generated by the set of constraints describing the affine space of the
global numerical domain then the {xi} program points are in mutual exclusion but they
do not have to be present in every configuration of the system.

In the following example, we can automatically determine that the following term
satisfies the linearity property.

νaα,bβ, a �1:�0;1� [m()2:�0;1�() = ζ(e,s)(e �3:�0;1� s),
send4:�0;1�(x) = ζ(e,s)(x �5:�0;1� beh(s))]

|| b �6:�0;1� [beh7:�0;1�(x) = ζ(e,s)(e �8:�0;1� x)]
|| a �9:�0;1� send(b) || b �10:�0;1� m()

All the actors are associated with the interval �0;1�. The only actor that can be asso-
ciated to address a is 1 and others (3,6 and 8) can be associated with address b. Then
the constraint p3 + p6 + p8 = 1 can be observed in the global numerical part of the post
fixed point of the analysis. We can notice that we have a stronger property: there is
exactly one actor on the address b in every configuration of this term.

5.2 Bounded Resources

As CAP is an asynchronous calculus, when a message is sent we cannot ensure that
it will be handled. With this property, we want to determine if the system grows in-
finitely; if the system creates more messages than it can handle. Our analysis is able
to infer such a property. We first check which message can have an unbounded num-
ber of occurrences. Then we check in the global numerical invariants of the system a
constraint between the number of occurrences of this message and the number of oc-
currences of a transition labeled with the same message label. When such a constraint
can be found, we can say that this message will be in the system an unbounded number
of times, but it will be handled the same number of times. The system size is constant,
it does not diverge.

90 P.-L. Garoche, M. Pantel, and X. Thirioux

In the following example, our analysis is able to find that at most one message is
present in the system: program points 3, 7 and 9 associated with interval �0;1�. The
system described by this term is bounded. Furthermore, we have the constraint p3 +
p7 + p9 = 1.

νaα,νbβ, a �1:�0;1� [ping2:�1;1�() = ζ(e,s)(b �3:�0;1� pong() || e �4:�0;1� s)]
|| b �5:�0;1� [pong6:�1;1�() = ζ(e,s)(a �7:�0;1� ping() || e �8:�0;1� s)]
|| a �9:�0;1� ping()

In addition, we can also detect whether a system does not generate an unbounded
number of actor present at the same time in a given configuration.

νaαa �1:�0;1� [m2:�1;1�() = ζ(e,s)(νbβb �3:�0;1� s || b �4:�0;1� m())] || a �5:�0;1� m()

In the preceding example, we automatically detect that the number of threads asso-
ciated to program point 3 lies in �0;1�.

5.3 Unreachable Behaviors

We are interested in determining the subset of behaviors that are really used for each set
of behaviors. Due to its high-order capability, CAP allows to send the set of behaviors
syntactically associated to an actor to other actors. Therefore the use of the behavior’s
set depends highly on the messages exchanged.

In the following example, all the behavior branches of the behavior syntactically
defined at program point 1 are used. We check such a property by checking that each
label of transition is present at least once or its continuation has been launched. I.e. ∀t ∈
Vc, Inter(t) �= �0;0� where Inter is the function that maps each element of Vc to its
image in interval part of the analysis post fixed point.

νaα,bβ,cγ, a �1 [m2
0() = ζ(e,s)(b �3 n1(s) || b �4 m1(c)),

m5
1(dest) = ζ(e,s)(dest �6 m2()),

m7
2() = ζ(e,s)(Ø)]

|| b �8 [n9
1(sel f) = ζ(e,s)(e �10 sel f || c �11 n2(sel f))]

|| c �12 [n13
2 (sel f) = ζ(e,s)(e �14 sel f)]

|| a �15 m0()

We can use such an analysis to clean the term with garbage collecting like
mechanisms.

6 Conclusion

We have adapted the framework of FERET [15] to deal with a higher order process
calculus modeling actor languages. With such a framework, we are able to analyze CAP
terms without any restriction about the kind of values sent within messages: we can now
handle behavior passing, which was not able with our previous type based analysis. In
contrary to our aforementioned analyses about actor’s calculus, we are able to easily
count occurrences of both actors and messages. Therefore, most of the properties we

Static Safety for an Actor Dedicated Process Calculus 91

obtain are related to occurrence counting. We can detect whether the number of actors
and messages is finite, whether there is dead code and whether the message queues are
bounded. We also have the linearity property under certain restrictions.

To go further, we need another abstraction which will split thread’s information into
computation units representing the recursive instances of the same thread. Such an ab-
stract domain will allow us to deal with linearity in the general case as well as handling
more properties. In fact the most interesting property with an asynchronous process
calculus with non uniform behavior, is the detection of orphan messages, i.e. stuck-
freeness. An orphan is a message which may not be handled by its target in some exe-
cution path. We distinguish two kinds of orphan: safety ones and liveness ones. Safety
orphans occur when all future behaviors of the target on a given execution path cannot
handle such a message. On the contrary, liveness orphans occur when one of the target
behaviors in each execution paths knows how to handle such a message but the target is
deadlocked and will never assume the corresponding behavior. We advocate that with
this new abstract domain we will be able to detect both kinds of orphans. We also want
to define a generic abstract domain dedicated to the data-flow like analyses provided by
type systems. Such an abstract domain can be useful to automatically build domains to
observe properties for which we already have a type system.

Acknowledgement

We deeply thank Jérôme Feret for fruitful discussions and careful proof reading of the
first author’s Master’s thesis [17].

References

1. G. Agha. Actors: A model of concurrent computation in distributed systems. MIT Press,
Cambridge, Mass., 1986.

2. T. Amtoft, F. Nielson, and H. R. Nielson. Type and behaviour reconstruction for higher-order
concurrent programs. Journal of Functional Programming, 7(3):321–347, 1997.

3. G. Boudol. Typing the use of resources in a concurrent calculus. In Proc. of ASIAN’97,
volume 1345 of LNCS, 1997.

4. C. Carrez, A. Fantechi, and E. Najm. Behavioural contracts for a sound composition of
components. In Proc. of FORTE 2003, volume 2767 of LNCS. Springer, 2003.

5. S. Chaki, S. Rajamani, and J. Rehof. Types as models: model checking message-passing
programs. In Proc. of POPL’02. ACM Press, 2002.

6. J.-L. Colaço, M. Pantel, F. Dagnat, and P. Sallé. Static safety analysis for non-uniform service
availability in Actors . In Proc. of FMOODS’99, volume 139, pages 371–386. Kluwer, B.V.,
1999.

7. J.-L. Colaço, M. Pantel, and P. Sallé. An actor dedicated process calculus. In Proc. of the
ECOOP’96 Workshop on Proof Theory of Concurrent Object-Oriented Programming, 1996.

8. J.-L. Colaço, M. Pantel, and P. Sallé. Static analysis of behavior changes in Actor languages.
In Object-Oriented Parallel and Distributed Programming, pages 53–72. Hermès Science,
8, quai du Marché-Neuf, 75004 Paris, France, 2000.

9. M. Colin, X. Thirioux, and M. Pantel. Temporal logic based static analysis for non uniform
behaviors. In Proc. of FMOODS’03. Springer, 2003.

92 P.-L. Garoche, M. Pantel, and X. Thirioux

10. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proc. of POPL’77, pages
238–252. ACM Press, 1977.

11. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Compu-
tation, 2(4):511–547, 1992.

12. J. Feret. Occurrence counting analysis for the pi-calculus. In Proc. of the 1st Workshop on
GEometry and Topology in COncurrency Theory, volume 39.2 of ENTCS. Elsevier, 2001.

13. J. Feret. Dependency analysis of mobile systems. In Proc. of ESOP’02, number 2305 in
LNCS. Springer, 2002.

14. J. Feret. Abstract interpretation of mobile systems. Journal of Logic and Algebraic Pro-
gramming, 63.1, 2005. special issue on pi-calculus, 2005.

15. J. Feret. Analysis of Mobile Systems by Abstract Interpretation. PhD thesis, École polytech-
nique, Paris, France, february 2005.

16. C. Fournet, C. Lavene, L. Maranget, and D. Rémy. Implicit typing à la ml for the join-
calculus. In Proc. of CONCUR’97, volume 1283 of LNCS. Springer, 1997.

17. P.-L. Garoche. Static analysis of actors by abstract interpretation. Master’s thesis, École
Normale Suprieure de Cachan, 2005.

18. M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: a language for controlling mobile code.
In Proc. of FoSSaCS’04, LNCS, pages 241–256. Springer, 2004.

19. C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial
intelligence. In Proc. of IJCAI’73, 1973.

20. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical Com-
puter Science, 311(1-3):121–163, January 2004.

21. M. Karr. Affine relationships among variables of a program. Acta Informatica, 6:133 – 151,
1976.

22. N. Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122–159, 2002.

23. E. Najm, A. Nimour, and J.-B. Stefani. Infinite types for distributed object interfaces. In
Proc. of FMOODS’99, volume 139. Kluwer, B.V., 1999.

24. J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis. In Proc. of POPL’95,
pages 367–378, 1995.

25. R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
26. F. Puntigam. Types for Active Objects based on Trace Semantics. In Elie Najm et al., editor,

Proc. of FMOODS’96, Paris, France, 1996. Chapman & Hall.
27. S. Rajamani and J. Rehof. A behavioral module system for the pi-calculus. In Proc. of

SAS’01, volume 2126 of LNCS, pages 375–394. Springer, 2001.
28. A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects. In Proc. of CON-

CUR’00, volume 1877 of LNCS. Springer, 2000.
29. A. Venet. Static Analysis of Dynamic Graph Strutures in Untyped Languages. PhD thesis,

École polytechnique, Paris, France, december 1998.

Temporal Superimposition of Aspects for Dynamic
Software Architecture

Carlos E. Cuesta1, María del Pilar Romay2,
Pablo de la Fuente3, and Manuel Barrio-Solórzano3,�

1 Kybele, Departamento de Lenguajes y Sistemas Informáticos
ESCET, Universidad Rey Juan Carlos, Madrid (Spain)

carlos.cuesta@urjc.es
2 Departamento de Sistemas Informáticos

Escuela Politécnica Superior, Universidad Europea de Madrid (Spain)
pilar.romay@uem.es

3 Depto. de Informática (Arquitectura, C. Computación y Lenguajes)
E.T.S. Ingeniería Informática, Universidad de Valladolid (Spain)

{pfuente, mbarrio}@infor.uva.es

Abstract. The well-known Separation of Concerns Principle has been revisited
by recent research, suggesting to go beyond the limits of traditional modulariza-
tion. This has led to the definition of an orthogonal, invasive composition rela-
tionship, which can be used all along the software development process, taking
several different forms. The object-like entity known as aspect is the best known
among them, but in the most general case it can be defined as a new kind of struc-
ture. Software Architecture must be able to describe such a structure. Moreover,
as most ADLs have a formal foundation, this can be used to provide an adequate
formalization for the aspectual composition relationship, which is still under dis-
cussion. In this paper, we propose to base this architecture-level definition in the
concept of superimposition, integrating the resulting framework into the process-
algebraic, dynamic ADL named PiLar. This language has a reflective design,
which allows us to define that extension without redefining the semantics; in ad-
dition, the extended syntax can be used to avoid the use of reflective notions.
Nevertheless, the language must provide the means to define general patterns
to guide the weaving. Such patterns must not only identify locations in the ar-
chitecture, but also the adequate states of the corresponding process structure.
Therefore, we suggest to use temporal logic, specifically the μ-calculus, as the
quantification mechanism. To illustrate this approach, we expose a case study in
which all these ideas are used, and conclude by discussing how the combination
of temporal logic and aspect superimposition, in this context, provides also an
alternative way to describe architectural dynamism.

1 Introduction

From the very beginning, one of the basic guidelines of Software Engineering has been
the Separation of Concerns Principle [20]. This is yet another translation of the clas-
sic strategy known as divide et impera, commonly attributed to Julius Caesar, to the
� This research has been partially financed by the Spanish Ministry of Education and Science

under Projects MCYT-TIC2003-07804-C05-01 (DYNAMICA) and MCYT-TIC2003-09268.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 93–107, 2006.
c© IFIP International Federation for Information Processing 2006

94 C.E. Cuesta et al.

computing field. The principle itself is at the core of every conceptual division within
the Software Engineering body of knowledge, and its purpose is to separately deal with
every detail in the development process, thus obtaining both simplicity and cohesion. It
is also the deep reason behind the traditional practice of modularization, which causes
the definition of structures within software; and also the motivation to create a specific
discipline to study them, namely Software Architecture.

In recent years, this principle has been revisited and given birth to the approach known
as Advanced Separation of Concerns, within which the so-called Aspect-Oriented
Software Development [12] is the best known incarnation. Considered as a whole, it is
basically an approach to software development in which those different concerns –or as-
pects– within a system are conceived and designed as separate entities. The
result of this process is a set of overlapping functional elements or modules, maintaint-
ing mutual dependencies and crosscutting relationships. Traditional modular barriers are
crossed; structural schemas, typically compositional and thus hierarchy-based, are no
longer valid. An orthogonal, invasive composition [2] relationship is used instead.

This new kind of element, often known as aspect, was initially conceived within the
boundaries of programming, at the implementation phase; but this origin has been su-
perseded long ago. Nowadays, the principles of Aspect Orientation are applied all along
the software lifecycle; in fact, there’s even a specific term, namely early aspects, to re-
fer to their influence in early stages of the development process, such as requirements
specification and architectural design itself.

Therefore, to study the concept of aspect from an architectural point of view is not
only reasonable, but even relevant. Moreover, as already exposed in [10], aspects are
related to the notion of architectural viewpoint [24], still one of the more important and
less studied in the field. However, existing Architecture Description Languages (ADLs)
are conceived around the dimensions of composition and interaction, and designed to
describe their structures. However, aspectual structures are not strictly compositional,
as they have a different nature; so they are not easily specified using current ADLs. To
adapt them to this sort of description, some specific extension must be defined.

In this paper we outline such an aspect-oriented extension for an existing ADL

namely PiLar [9]. This language has a reflective basis, which has made us able to
design this extension without affecting the semantics. But at the same time, the impact
of the new syntax on the whole of the language has been greater than at first expected.
On the one hand, the aspectual perspective can be used to avoid the complex reflective
interpretation of the original; on the other hand, the new setting provides a whole new
approach to describe dynamic architecture.

2 On the Notion of Superimposition

The concept of superimposition, also known as superposition, was first proposed in
Concurrency Theory, both in the context of process algebras and action systems [3, 6].
It was originally conceived as a notion of refinement, relating different versions of a
specification as variations from the original. The same approach was later used as an
isomorphic notion of extension, composing a basic description with additional details.
Consequently, superimposition is now conceived as a privileged relationship between

Temporal Superimposition of Aspects for Dynamic Software Architecture 95

two concurrent entities, such that the first one is able to access the internal details of the
second one. This relationship has essentially a compositional nature.

Superimposition has also been approached from a different perspective, recently. In
the search for an adequate formal foundation for the novel concepts identified in the
context of Advanced Separation of Concerns, and particularly in Aspect Orientation,
it has been regarded as a suitable candidate. The alternative composition offered by
superimposition could possibly be assimilated to the invasive composition implicit in
those concepts. In fact there are already several proposals relating this formal concept
to the notion of aspect [14, 17, 21, 22], though most of them are located at a program-
ming level. The only exception are Katara and Katz [15], who have also studied those
concepts at the architectural level, but still using an informal approach.

There are several different definitions of superimposition in the literature. Though
similar, they are not actually equivalent. Fiadeiro and Maibaum studied them from a
categorical perspective [11], finding out that there are really three different flavours of
the concept, which are respectively named invasive, regulative and spectative super-
imposition. The first one is the simplest as it is unrestricted; the third one is the most
complex as it bears several restrictions to achieve better extensional properties.

In the architectural context, the most interesting among all the definitions of super-
imposition is probably Katz’s [16], as it describes not a relationship, but an structure.
The traditional strategy is to define the formal semantics for the superimposition rela-
tionship and then summarize it in a single compositional operator or morphism. Instead,
Katz uses a different approach. He defines superimposition as a high-level concurrent
control structure which implicitly uses the concept, and then provides the semantics
for this construct. Therefore the relationship itself, a well-behaved form or spectative
superimposition [11], is only indirectly defined.

This approach seems to be very adequate for the architectural domain, as the con-
struct has a significant resemblance to certain presentations of the concept of connector,
particularly higher-order connectors. Moreover, the resulting structure is also somewhat
similar to aspectual collaborations [19], the most recent result of the work by Lieber-
herr et al on aspect orientation. This coincidence suggests that Katzian superimposition
provides indeed a good starting point to explore aspectual composition at the architec-
tural level, and therefore this is the definition to be used in the rest of this document.

2.1 Katzian Superimposition

In the following, the term superimposition will be generally used in the most general
sense, but assuming Katz’s definition [16] when necessary. Therefore, the expression
Katzian Superimposition will be used to explicitly refer to this restricted meaning, and
to concrete features in it which differ from some other approaches.

Structurally, every superimposition relationship has two parts: a superimposed ele-
ment, and another(s) base element(s) where it is superimposed to. The complete struc-
ture receives the name of superimposure or combination. In the original conception, this
is just spectative superimposition, in which the superimposed process refines or extends
the original. It is able to inhibit the external interaction of the superimposee and also
to observe its internal behaviour, but it cannot modify the latter [3, 16]. In summary, it
doesn’t have full control over it, and acts like a monitor.

96 C.E. Cuesta et al.

The frequent use of such terms as superimposed or superimposee is rather confusing.
To avoid complex periphrasis, we have decided to use a prefix-based notation, which
states clearly the relative position of involved elements. Then, the superimposed com-
ponent will be designated as σ-component, and it is conceived to be situated “over”
some superimposee component, here known as β-component.

In Katzian superimposition, the relationship is defined as a structure which could
simultaneously comprise several β-processes, such that the set of their σ-processes de-
fines an algorithm –a behaviour– which is globally superimposed over a significant
subsystem. The basic idea is that different σ-components may play different roles in
this algorithm, thus providing us with the means to modularize the specification, while
at the same time grouping these modules in a single construction.

Each one of those roles are defined as subprocesses in a Katzian superimposition,
where they receive the name of roletypes. The same roletype could have several in-
stances: that is to say, several elements could be playing the same role in the algorithm,
and share the same description. In this case, several σ-processes, defined as the same
roletype, are superimposed over several β-processes.

Thus the notion of roletype is very useful from an architectural perspective, and it
would be used in the following sections. However, this could cause some confusion with
the concept of role in a connector, which is somehow similar. To avoid this, we would
use the name role-component to refer to the same notion in the architectural domain, as
it has features in common to both ideas.

3 Aspect-Oriented Architecture in PiLar

The PiLar [7, 8, 9] language is a dynamic, process-algebraic ADL, based on the notion
of abstract process [8] and the concept of reflection, and with semantics founded on re-
lation theory and the polymorphic π-calculus. The use of reflection is its distinguishing
feature: as a consequence of that, a PiLar description could be stratified in multiple
meta-levels, components are implicitly divided in three categories (base component,
meta-component and meta-level component) and have a dual nature, and the definition
of first-class connectors is not strictly necessary.

Our previous work [10] shows that the existing language, with the associated reflec-
tive support, was powerful enough to simulate the superimposition structure and the
combination schema in an aspect-oriented architectural description. There, the founda-
tion of our approach was the process-algebraic strategy of Andrews’ definition [1]. But
at the same time this approach was rather complex, and we suggested ourselves that an
specific syntax for the new set of concepts would be rather convenient.

In the next sections we describe a proposal for an aspect-oriented extension of
PiLar, now using Katzian definition as a foundation. By doing so, we expose the real
expressiveness of such an approach, and simultaneously provide a completely different
perspective for the ADL, as the syntax acquires an alternative nature.

Of course this new vision does not exclude the previous one, though it can be used
to hide it. Using it, we’re able to describe the language without any mention of the
concept of reflection or the meta-level hierarchy, but at the same time we retain most of
the expressive power of the reflective vision.

Temporal Superimposition of Aspects for Dynamic Software Architecture 97

Table 1. Rough Conceptual Analogies in/to both PiLar Models

New Concept Analogous Aspectual Notion Former Reflective Concept

Viewpoint Concern Reification Category
Architectural View Crosscut Meta-Level (subset)

Multi-dimensional Component Hypermodule (Extended) Metaspace
Architectural Fragment Aspectual Component Composite Meta-level Component

Partial Component Aspect, Hyperslice Metaspace (subset)
Exterface Aspect Interface Metaface (Meta-Interface)

Bond Assertion Pointcut Designator —
(Aspect) Connector

Superimposition (target) Pointcut Reification (target)
Role-Component Pointcut (subject) Reification (origin)

Superimposition (relationship) Dynamic Weaving Reification (relationship)
Combination (Superimposure) Weaved system Reification (set)

β-Component Base Module Base Component, Avatar
σ-Component Aspect (part of) Meta-Component, Rohatar
σ-Constraint Advice Meta-Constraint

Component in-a-Fragment (Aspect) Wrapper Meta-level Component, Niyatar
Bound β-Action Join Point Synchronization with Avatar

However, these aspectual and reflective perspectives of the same language are not
conflicting at all; on the contrary, they naturally complement each other. So we’re not
rejecting the reflective interpretation, which is still more powerful; we’re just providing
an alternative explanation for the language, which allows us to initially avoid some of
the most complex notions in the language.

3.1 PiLar Revisited: A New Vision for the Language

We have already exposed the reasons why we consider the description of aspect-oriented
architectures to be relevant. An explicit aspect-oriented syntax is not strictly required,
as we can use the reflective syntax to provide this description indirectly, as already ex-
posed in [10]. However, this approach could allegedly be considered too complex. For
this reason, we found it convenient to extend the language’s syntax, such that relevant
concepts can be directly managed.

This syntax extension would be based in Katzian superimposition, as this construct’s
shape provides an almost direct mapping to the architectural level. Specifically, the
following concepts are introduced:

Architectural Fragment or Partial Component. This name designates the analogue
of an aspect at the architectural level. Such an aspect is a new kind of module,
similar to a component, but which was not designed to work on isolation; that’s why
it has a partial description. It is syntactically identical to a composite component,
which unfolds as a Katzian superimposition.

Superimposition. Relationship which is implicitly introduced in the new model. It has
the form of a Katzian construction, where the main structure is a fragment, the el-
ements are plain components and role-components, instantiating as σ-components,
and the resulting architecture defines a combination.

98 C.E. Cuesta et al.

Role-Component. Each of the roles we can superimpose over a β-component when
defining a Katzian structure. They are the “holes” in the architectural fragment, and
they are filled by σ-components when the superimposition is made effective.

σ-Component. Every instance of a role-component, which is superimposed over a
β-component. It can define also “external”, non-superimposed behaviour.

β-Component. Every one of the base components where a σ-component is being
superimposed, filling a gap in the fragment.

Combination. The set of all the elements involved in a Katzian superimposition, once
it has been applied.

This version of the superimposition structure extends Katz’s one merely by adding
compositional details. Therefore, the fragment could have its own external interface,
which is not projected into β-components; it could define its own constraints, which
would be combined to those of its internal elements; and of course, a fragment definition
can use additional components which are not going to be superimposed, that is, which
would never act as role-components.

The new conceptual structure of the language is completely based on the implicit
mapping between two structural relationships: the already existing, reflective notion of
reification, and the concurrent concept of superimposition, introduced by the aspectual
extension. Curiously enough, this idea is supported by the original semantics of the lan-
guage, as there reflection is unfolded as a π-calculus structure of concurrent processes
which is inspired [8] in another definition of superimposition [3].

The syntax is inspired in Katzian superimposition, and this means that this concep-
tual mapping would not be direct at the linguistic level. This means that some of the
more complex aspectual notions are built over a set of several reflective elements; and
also that some basic reflective concepts lack a peer in the aspectual view.

However in general terms, the mapping between the more important aspectual and
reflective notions is rather intuitive. Every β-component is a base-component, and its
σ-component is a meta-component. So, the notion of role-component is just a way
to explicitly declare the meta-components in a fragment, and superimposition is just
a reification relationship which is reflected over an already existing base component.
Consequently, an architectural fragment is a composite meta-component, composed of
one or several meta-components and (possibly) some additional meta-level components.
Only the notion of combination lacks a reflective equivalent, as it combines elements
which are situated in two different meta-levels.

There’s no space here to provide a more detailed mapping between the reflective and
aspectual concepts in PiLar, as this is not our main concern here. Similarly, a detailed
explanation of their similarities and differences which analogous notions in the specific
field of Aspect Orientation would also require a rather long exposition, particularly to
explain those analogues. This comparison is interesting anyway, so we provide a brief
and compact summary both mappings in the Table 1.

3.2 A New Extended Syntax for the PiLar Language

Table 2 contains an enumeration of the new syntactic elements added to the language,
which are based in the notions we have described in the previous section. Here we

Temporal Superimposition of Aspects for Dynamic Software Architecture 99

Table 2. Aspect-Oriented Extension for PiLar: Syntax

Keyword Notion Basic Structure

\fragment Architectural Fragment Analogous to a composite component including
role-components.

rolecomp Role-Component Declaration of a component instance which acts
as a σ-component. A “hole” in a fragment.

\exterface Exterface Non-superimposed interface, reserved for the
(External Interface) private use of the σ-component itself.

bcomp β-Component Prefix to designate elements of a β-component.
scomp σ-Component Prefix to designate non-superimposed elements.
impose Superimposition Dynamic operator to superimpose a fragment

over several β-components (see Figure 4).
del Unweaving Deletion (destruction) of a superimposition.
\bond assertion Bond Asssertion Syntax to select relevant join points.

will not try to describe the minor details of this syntax, as they are rather intuitive, and
anyway most of them will be used later for the case study included in section 4.

The only notion we have not mentioned before is that of bond assertion. This is
the incarnation of the quantification mechanism which is necessary in every aspect-
oriented language [13, 10]. As we expose in the next section, this mechanism is based
on temporal logic, and it provides the syntax to select join points at any place or moment
in the architecture, resulting in a truly dynamic weaving mechanism.

Of course, already existing introspective (reflective) operands in the language can
still be used. In fact, some of them are even essential to outline a good aspect-oriented
description, as they fill the role of so-called aspectual reflection [18] abstractions. For
example, the language already included a reflective operator, bound, to obtain the set
of links bound to a given port (or the set of ports pount by a given link). This operator
happens to be also particularly useful in an aspectual context.

Most of this “extended” syntax is actually just syntactic sugar for aspect-oriented
abstractions. Not a single element in the language semantics has required to be adapted
to the new conception of the ADL. This is in accordance to our initial purpose, in which
this new version of PiLar is conceived just as a different presentation of the same
language, which tries to avoid the use of reflective notions.

However there is an exception to this rule: the definition of assertions and the use of
temporal logic is actually a new addition to the language. But this addition has not been
an arbitrary decision; as explained next, there are several reasons to use it.

3.3 The Syntax of Temporal Assertions

The existence of some quantification mechanism is strictly necessary for a sensible
Aspect Orientation definition [13]. Without it, every join point between two structures
has to be individually designated. Though this would still be useful [10], it is not flexible
enough; an architectural description is supposed to describe structural patterns, and
therefore the lack of a general expression to refer to patterns of superimposition would
be considered as a severe limitation.

100 C.E. Cuesta et al.

Moreover, in the context of dynamic architectures, the choice of a particular join
point to superimpose an architectural aspect does not only depends on the system’s
structure, but frequently also on the concrete situation or state in which an element (or
set of elements) is. Superimposition happens not only at a place in the architecture, but
also at a particular moment in the system’s evolution.

Existing aspect-oriented languages, at the programming level, use quantification
mechanisms based just on name structure; this would be a very inadequate approach
at the architectural level. Some other proposals provide a better mechanism by suggest-
ing the use of some variant of predicate logic. While this is much more flexible, it is
still not enough, particularly in the presence of time. Besides, classical logic is probably
not the best choice to combine with the semantics of a process-algebraic ADL, which
would usually consist of transition systems.

Then our proposal tries to be a solution to both problems, and it is based on the
addition of temporal logic to the language, using the form of assertions or laws. In the
context ofPiLar, which is founded on a process algebra and the notion of bisimulation,
the obvious choice is the modal μ-calculus [4], a branching-time temporal logic, which
is also considered as the most general among them.

Therefore, the syntax for temporal assertions would be based in that of PiLar’s
dynamic language and the μ-calculus. There are several different but equivalent nota-
tions for the latter; here we follow Stirling’s [4, 23], probably the best known among
them. Currently we would only use the basic syntax; but this is just a first approach to
the problem, so it should not be taken as a final decision. We could consider further
additions, like pure temporal operators in the CTL style, which are usually considered
easier to understand by the average software engineer. Those would be syntactic sugar
anyway, as their semantics are already expressible in the μ-calculus syntax.

The basic extension is just a notion of law or assertion. With this addition, the lan-
guage acquires a new quality, as it gets transformed into some sort of Law-Governed
PiLar, which is even capable of describing architectural styles. However, subject to
this notion there’s a set of new concepts, which are summarized in the following.

Assertion. Following Lamport, we use the term assertion to refer to any temporal
formula defined over the architecture. The purpose of this term is to easily separate
them from behavioural constraints, which in PiLar are defined as processes. The
assertion structure of the syntax is defined to contain these formulae.

Bond Assertion. The only difference between this and a conventional assertion is that
this is active. This means that when the formula requires an action to happen, and
this action is not observed, the assertion itself is in charge of doing it, but only if this
action is related to a superimposition. Expressed otherwise, if an assertion states
that an impose action must happen, the assertion itself is the one which creates a
superimposition. Apart from being prefixed with a \bond qualifier, the syntax is
identical to that of a conventional assertion.

Action. Any valid action in a PiLar specification, in particular message inputs and
outputs through some port. They are the set of observable events from the asser-
tion’s point of view. The syntax allows to specify a single action or an enumeration
of several ones. When it is prefixed by a minus (–) sign, this refers to the set of each
action except for this. Conversely, the asterisk (∗) refers to every of them.

Temporal Superimposition of Aspects for Dynamic Software Architecture 101

Bound Name. This is not a μ-calculus notion, as it comes from aspect orientation. As
noted above, assertions are used as a quantification mechanism, and they observe
actions happening in any port of the namespace. Then such a port is a join point
within a component, and thus we would often need to refer to it again. To be able
to do that, we provide a mechanism to bind the name of these elements within a
special variable defined for this purpose. The binding process must comply with
the Scope Inversion Rule, stated below.

Possibility Modality. When referencing an action, this means that if the action hap-
pens, the expression which follows in the assertion may be true. The purpose is
to state that the system is able to do something in this point of its evolution. It is
expressed by enclosing the action 〈a〉 in angles.

Necessity Modality. The second alternative. When referencing an action, this means
that if it happens, the expression which follows must be true. The purpose is to
forbid any other possibility to happen in the system, indicating an inhibition. It is
expressed by enclosing the action [a] in brackets.

Minimal Fixpoint. It has a complex semantics; but we can summarize it [4] by saying
that it specifies a repetition of undefined, but finite length. In the μ-calculus, it is
often expressed as μ (or min); in PiLar, we shall use the keyword nrec.

Maximal Fixpoint. It is equally complex; we can summarize it by saying that it spec-
ifies a repetition of infinite length. In the μ-calculus, it is often expressed as ν (or
max); in PiLar, we shall use the keyword xrec.

This construction has the same semantics as the equivalent notions in the μ-calculus,
and therefore it has been already formally defined [4, 23]. There’s only one difference
from their usual application to a process algebra: here we don’t have a flat namespace,
but a hierarchy of names. This results in two consequences. First, any assertion must
be defined over a concrete namespace, provided by a component; this is designated by
using the over clause. Second, it is often necessary to bind the name of the components
in which actions are observed. As stated above, this binding process must comply with
the rule which follows:

Rule 1 (Scope Inversion). Every action on a port which is observed in an assertion
binds the name of the innermost component where this port belongs in the composition
hierarchy, using the conventional syntax to qualify those names.

Next we will expose an example to show how an assertion works. To ease the explana-
tion, and also to show the differences in the notation, we would use the same one which
is later provided in PiLar syntax in Figure 4. Moreover, the actions to be observed
(acc1 and acc2) have been abstracted, so that we just focus on the temporal aspects of
the formulae and not on the concrete behaviour.

This assertion1 uses the conventional notation of the μ-calculus [4]. The mapping
to the syntax in PiLar should be apparent by comparison to the descripiton in the
Figure 4, taking into account that the actions (acc1 and acc2) are themselves PiLar
actions, expressed in the syntax of the dynamic language.

1 This is of course just a single assertion (Always_Do_Tunnel), but it has been divided in three
parts to ease its explanation. The specification in a single formula can use a much more com-
pact notation, which is: ν X. ([acc1] ([−acc2]false ∧ 〈−〉true) ∧ [−] X).

102 C.E. Cuesta et al.

Must_Tunnel ::= [−acc2] false ∧ 〈−〉true (1)

Do_Tunnel ::= [acc1]Must_Tunnel (2)

Always_Do_Tunnel ::= ν X. (Do_Tunnel ∧ [−] X) (3)

The assertion has been separated in three formulae, such that each one of them is
contained in the following. So we begin with the most internal one (1). It describes the
conjuction of two terms: the second states that it’s possible for any action to happen; the
first states that when something happens which is not the acc2 action, the formula gets
false. This means that the conjunction only gets true if the acc2 action actually happens.
This is the μ-calculus way to indicate that something is mandatory.

The second equation (2) is trivial; it just states that after an acc1 action happens, the
previous one (1) is necessarily true; in summary, acc2 must happen.

The last equation (3) encloses the former one in another conjunction, inside the scope
of a maximal fixpoint (ν X). The other part of the conjunction is enabling any action
to happen, assuming that the fixpoint X (that is, any possible future) gets true. For this
to be consistent, if the acc1 action happens at some point in time, the other equation (2)
must be true, and so this forces us to “trigger” acc2. This is a maximal fixpoint, therefore
this sequence can happen as many times as required (“always”).

In summary: the assertion states that an acc1 action may happen at any moment, but
in the case the next action is necessarily acc2; and this is always true, meaning that this
happens every time the action acc1 is observed.

4 Case Study: P/S Architecture with Secure C/S Connection

In this section we provide a case study outlining the use of the new aspectual framework,
to show how it can be applied for the purposes of architectural description. To simplify
things, we use an augmentative (asymmetric) model, which grows from an initial ba-
sis; a compositive model, though symmetric, would have been much more complex.
The general idea is that we begin with a base architecture, and then we superimpose a
security aspect over it, defining the weaving as a bond assertion. Besides, this super-
imposition indirectly modifies the system’s structure; therefore, this is also an example
of a new way to describe architectural dynamism, a very interesting side-effect of the
aspectual framework.

The case study describes a hybrid architecture, blending the Publisher/Subscriber2

and the Client/Server architectural styles [5]. The global conception is that of a dis-
tributed system composed of a number of subscribers which contract the services of a
publisher; for instance, a news service. As soon as new contents are made available, the
publisher notifies subscribers by triggering an event. When a subscriber observes this
event, it must decide whether it is interested in those contents or not. If this is the case,
the subscriber starts to behave like a client, which tries to communicate to a server; but
the connection to this server has yet to be created. In this particular moment, a secure
connection among them is created, applying a tunneling protocol which ensures that ev-
ery interaction between them is encrypted in advance. Using this connection, the client
receives the selected contents. This process may happen as many times as required.

2 This architectural pattern has also been described in the literature as the Implicit Invocation
architectural style, and even the Observer design pattern. The structure is fairly identical.

Temporal Superimposition of Aspects for Dynamic Software Architecture 103

\component Publisher (
\ interface (port notify | port server)
\constraint (

Provide def= (Publish | Serve)

Publish def= rep (tau (msg);
loopSet (bound(notify))

(notify !(msg)))

Serve def= rep (server?(req);
tau (req,data); server!(data))))

\component Subscriber (
\ interface (

port receive | port client)

\constraint (
Observe def= rep (receive?(msg);

tau (msg,ask,req);
if (ask) (Request(req)))

Request(req) def= (client !(req);
client ?(data); tau (data))))

\component System (
\config (

PS: Publisher | S1, S2, S3: Subscriber |
\bind (

PS.notify = S1.receive |
PS.notify = S2.receive |
PS.notify = S3.receive)))

Fig. 1. Hybrid Publish/Subscribe and Client/Server Architecture (w/o connection)

Many details of this example which are not strictly related to this paper’s subject have
been left out, as we try to briefly expose an averagely complex system. Therefore, there
are details on the final system which don’t try to be realistic. Then, the specification
shows how new private connections are created, but they are never destroyed; the only
reason to omit this step is to keep the example short and simple enough.

The case study is described in Figures 1 to 4. The first one provides the base Pub-
lish/Subscribe architecture, and also the Client/Server infrastructure. The second one
describes an architectural fragment, which provides the secure connection by using the
tunneling protocol. In the last one we provide the bond assertion, which dynamically
“triggers” the superimposition of this fragment to the base architecture.

The specification in Figure 1 is therefore fairly standard. The Publisher component
has two ports, enabling it to act as publisher or server, as required; and two constraints,
Publish and Serve, which control any interaction in these ports. The first process starts
when some new content –expressed as an internal tau action– is created; then this is
notified to every subscriber connected to the notify port. The second process describes
how the server waits to receive some request; when this happens, it locates the requested
data, and sends them to the requesting client.

On the other hand, the Subscriber component can similarly behave either as a sub-
scriber or a client. However in this case the two relevant constraints are related. The first
process, Observe, waits to receive a notification event, which is internally evaluated. If
an affirmative decision is taken, the component begins to behave as a client by starting
the Request process. This just sends a request for the new content, waits to receive the
result, and then processes the information.

The System component is just a composite to define the whole of the system. Let us
note that initially, only the publisher and its subscribers are connected.

Figure 2 describes an architectural fragment defining the superimposition of a secure
connection, supported by a tunneling protocol, over the previous base architecture. So
it is the equivalent of a security aspect. As this is conceived in an augmentative model,
a high degree of connascence with the β-architecture is allowed, something that could
be less adequate in a symmetric model.

The Tunnel fragment is defined as a Katzian superimposition, built as the compo-
sition of two role-components connected by a basic link. These components define a

104 C.E. Cuesta et al.

\component TBegin (
\ interface (port send)
\constraint (

lock (bcomp.client);
rep (catch client (req); send!(req);

send?(ex); tau (ex,x);
shift client (x))))

\component TEnd (
\ interface (

port recv)

\constraint (
lock (bcomp.server);
rep (recv?(req); shift server(req);

catch server(x);
tau (x,ex); recv!(ex))))

\fragment Tunnel (
\config (

rolecomp TB: TBegin |
rolecomp TE: TEnd |
\bind (TS.send = TR.recv)))

Fig. 2. Architectural Fragment to Superimpose a Secure Connection

tunnel using this link: every message to be sent is encrypted in advance on origin, and
only the legitimate receiver would know how to decrypt it. This way a secure channel
is created over a conventional connection.

The tunnel has been designed to be asymmetric: only the sending of data is en-
crypted, while the requests are not, as they are not considered as sensible information.
This implies that interaction is always initiated by the same part of the interaction. As
a result, the tunnel is conceived as having an explicit beginning and an end, as indi-
cated by the archtypes TBegin and TEnd, which respectively describe the behaviour to
be superimposed over every client and the server.

The former has then been designed to be combined with a Subscriber. First, it
locks the client β-port, thus inhibiting any further uncontrolled interaction. Then it cap-
tures (catch) any message sent through this port, which must be a request. This request
is sent to the server unaltered, using the superimposed connection. Eventually, some
encrypted response is received, and it must be decrypted; this is made by an internal
process (tau). The requested data are then obtained, and then they are inserted (shift)
into the β-port. All this process is transparent to the oblivious client; it just requests
some data, and later receives those data in the same port.

The TEnd archtype is similar, but it gets superimposed to a Publisher. Equivalently,
it locks the β-port server, but now it waits for a request on the superimposed connection.
When this is received, it is inserted into the server component, which “believes” this to
be a conventional reception, and answers by providing the relevant data. Those data are
captured by the σ-component, which encrypts them in an internal process, and sends
the result through the σ-connection.

Figure 3 depicts and summarizes the architecture of the augmented system. Two long
arrows represent the superimposition relationship, which imposes TBegin and TEnd to
Subscriber and Publisher, respectively. Small arrows represent the flow of information
within the woven architecture.

Finally, Figure 4 describes the bond assertion which blends the fragment with the
β-architecture. Once we’re aware of the meaning of the temporal formula, which was
described in section 3.3, the explanation is immediate.

First, the assertion is declared: it is a bond assertion, defined over the namespace
of the System component, and the name of the main formula is Always_Do_Tunnel;
the rest are subformulae. The temporal expression is now evaluated; it means that any
action may indefinitely (xrec) happen; but if this action is some kind of sending through
a port named client, the name of the sending component is bound in a Sub variable;

Temporal Superimposition of Aspects for Dynamic Software Architecture 105

Fig. 3. Publisher/Subscriber System with a superimposed Client/Server Tunnel

\bond assertion Always_Do_Tunnel over System (
Must_Tunnel(s) is= [– impose Tunnel (s | PS)] false and <∗> true
Do_Tunnel is= (name Sub) [Sub.client!(_)] Must_Tunnel(Sub)
Always_Do_Tunnel is= xrec X (Do_Tunnel and [∗] X))

Fig. 4. Bond Assertion: Superimposing the Tunneling Aspect

data themselves are ignored. Now the next step is mandatory, as the formula requires:
the Tunnel fragment is superimposed over the bounded client and the standalone server.
This is a bond assertion, so it is the one which creates the superimposition; this way, the
fragment is woven into the architecture.

In summary, every time (always) a client sends a data request, a secure connection
between it and the server is transparently created.

Though simple, this example has yet another reason to be notorious; it shows how the
dynamic weaving (combination) of architectural aspects, based on the temporal logic
support, causes in fact a dynamic evolution of the architecture. Temporal logic has been
used before in the context of Architecture, but always for analyzing purposes, never to
describe a system, or a dynamic effect within it. As far as we know, this is the first time
that it is used to cause an effect on the system’s structure.

5 Conclusions and Future Work

An ADL must be first conceived as a formal description language. This means that it
is used to describe the structure and properties of an architecture, and this can be done
just for specification purposes. From this point of view, the existing temporal logic

106 C.E. Cuesta et al.

support is adequate for our purposes, as long as it can be used to capture the system’s
behaviour. But, an ADL can also be used to simulate (or even generate) the system
itself; in that case, the existing temporal support would not be enough. Some kind of
timeout mechanism would be required to limit the timeframe and ensure that a particular
superimposition indeed happens; a minimal fixpoint (“eventually”) formula would not
suffice to provide the required behaviour.

This paper introduces superimposition as “the” third architectural dimension, a role
which has previously been played by reflection. This is orthogonal to the traditional
dimensions of composition and interaction. The expressiveness of this approach is pro-
vided by combining elements located at different places in those three dimensions, even
indirectly. Though not as expressive as reflection, it provides still a very high degree of
flexibility, and a new approach to tackle the problem of architectural dynamism.

However, this implies aspect composition, something that at present has only been
tackled by using heuristic techniques. The only notorious exception is a work by Sih-
man [21, 22], which is also based on Katzian superimposition; so their results could be
considered in the context of PiLar. A detailed study is scheduled as future work. This
work will also include several related questions, such as the management of priorities
and dependencies between aspects. These problems are still open questions in research
within Aspect Orientation, and therefore any results at the architectural level would be
of general interest to the whole field.

On the other hand, the introduction of assertions in the language has been as generic
as possible, as it does not only provide the support to bind and weave aspects, but also
to define architectural styles. This is obviously a feature we have not exploited in this
paper; though very promising, it has yet to be carefully evaluated.

In summary, the introduction of the notion of “aspects” in Software Architecture
does not only provide the means to describe several new abstractions, but at the same
time simplifies the presentation of previous approaches, and outlines a whole new range
of applications, namely the specification of dynamism, the definition of multiple archi-
tectural views, the separate description of concrete concerns, such as security or coor-
dination, or the study of new composition schemes.

References

1. James H. Andrews. Process-Algebraic Foundations of Aspect-Oriented Programming. In
Akinori Yonezawa and Satoshi Matsuoka, editors, Reflection 2001: Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns, volume 2192
of Lecture Notes in Computer Science, Kyoto, Japan, September 2001.

2. Uwe Aßmann. Invasive Software Composition. Springer Verlag, 2003.
3. Luc Bougé and Nissim Francez. A Compositional Approach to Superimposition. In 15th

Annual ACM Symposium on Principles of Programming Languages, POPL’88, pages 240–
249, San Diego, 1988. ACM Press.

4. Julian C. Bradfield and Colin P. Stirling. Modal Logics and mu-Calculi: An Introduction. In
Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra,
chapter 4, pages 293–330. Elsevier Science B.V., 2001.

5. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

Temporal Superimposition of Aspects for Dynamic Software Architecture 107

6. K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

7. Carlos E. Cuesta. Reflection-based Dynamic Software Architecture. ProQuest Information
& Learning, Madrid, May 2003.

8. Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio-Solórzano, and Encarnación Beato. An
“Abstract Process” Approach to Algebraic Dynamic Architecture Description. Journal of
Logic and Algebraic Programming, 63(2):177–214, May 2005.

9. Carlos E. Cuesta, Pablo de la Fuente, Manuel Barrio Solórzano, and M. Encarnación Beato.
Introducing Reflection in Architecture Description Languages. In J. Bosch, M. Gentleman,
C. Hofmeister, and J. Kuusela, editors, Software Architecture: System Design, Development
and Maintenance, chapter 9, pages 143–156. Kluwer, August 2002.

10. Carlos E. Cuesta, M. Pilar Romay, Pablo de la Fuente, and Manuel Barrio-Solórzano.
Reflection-based, Aspect-oriented Software Architecture. In Flavio Oquendo, Brian War-
boys, and Ron Morrison, editors, Software Architecture, volume 3047 of Lecture Notes in
Computer Science, pages 43–56, May 2004.

11. José Luiz Fiadeiro and Tom S.E. Maibaum. Categorical Semantics of Parallel Program De-
sign. Science of Computer Programming, 28(2–3):111–138, 1997.

12. Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Aksit, editors. Aspect-Oriented
Software Development. The Object Technology Series. Addison-Wesley, October 2004.

13. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantifica-
tion and Obliviousness. In OOPSLA 2000 Workshop on Advanced Separation of Concerns
(ASoC’2000), October 2000.

14. Mika Katara. Superposing UML class diagrams. In AOSD’02 First Workshop on Aspect-
Oriented Modeling with UML (AOM1), Enschede, The Netherlands, April 2002.

15. Mika Katara and Shmuel Katz. Architectural Views of Aspects. In Proceedings of the Second
International Conference on Aspect-Oriented Software Development (AOSD’03), pages 1–
10. ACM Press, March 2003.

16. Shmuel Katz. A Superimposition Control Construct for Distributed Systems. ACM Transac-
tions on Programming Languages and Systems, 15(2):337–356, April 1993.

17. Pertti Kellomäki. A Formal Basis for Aspect-Oriented Specification with Superposition. In
Gary T. Leavens and Ron Cytron, editors, FOAL 2002 Proceedings: Foundations of Aspect-
Oriented Languages, pages 27–32, April 2002. ISU-TR02-06.

18. Sergei Kojarski, Karl Lieberherr, David H. Lorenz, and Robert Hirschfeld. Aspectual Re-
flection. In Proceedings of SPLAT’03, March 2003.

19. Karl Lieberherr, David H. Lorenz, and Johan Ovlinger. Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal, 46(5):542–565, September 2003.

20. David Lorge Parnas. On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, December 1972.

21. Marcelo Sihman and Shmuel Katz. A Calculus of Superimpositions for Distributed Systems.
In Proceedings of the First International Conference on Aspect-Oriented Software Develop-
ment (AOSD’02), pages 28–40. ACM Press, April 2002.

22. Marcelo Sihman and Shmuel Katz. Superimpositions and Aspect-Oriented Programming.
The Computer Journal, 46(5):529–541, September 2003.

23. Colin Stirling. Modal and Temporal Logics. In Samson Abramsky, Dov Gabbay, and
Tom S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 477–
563. Oxford University Press, 1991.

24. Eóin Woods. Experiences Using Viewpoints for Information Systems Architecture: an In-
dustrial Experience Report. In Flavio Oquendo, Brian Warboys, and Ron Morrison, editors,
Software Architecture, volume 3047 of Lecture Notes in Computer Science, pages 182–193,
St. Andrews, UK, May 2004. Springer Verlag.

Modeling Long–Running Transactions with
Communicating Hierarchical Timed Automata

Ruggero Lanotte1, Andrea Maggiolo-Schettini2,
Paolo Milazzo2, and Angelo Troina2

1 Dip. di Scienze della Cultura, Politiche e dell’Informazione, Università dell’Insubria
2 Dip. di Informatica, Università di Pisa

Abstract. Long-running transactions consist of tasks which may be
executed sequentially and in parallel, may contain sub-tasks, and may
require to be completed before a deadline. These transactions are not
atomic and, in case of executions which cannot be completed, a compen-
sation mechanism must be provided.

In this paper we develop a model of Hierarchical Timed Automata
suitable to describe the aspects mentioned. The automaton-theoretic ap-
proach allows the verification of properties by model checking. As a case
study, we model and analyze an example of long–running transaction.

1 Introduction

The term transaction is commonly used in database systems to denote a logi-
cal unit of work designed for short-lived activities, usually lasting under a few
seconds. These transactions are performed either completely or not at all: this
means that if something goes wrong during the execution of the transaction,
a roll–back activity is performed, which re–establishes the state of the system
exactly as it was before the beginning of the transaction.

In order to permit the system to perform the roll–back activity, locks are
acquired on the necessary resources at the beginning of a transaction and are
released only at its end (in both the cases of completion and roll–back). The
use of locks, which forbids others to access the resources, is justified by the
short duration of the transaction. These transactions are called ACID transac-
tions, because they satisfy the properties of Atomicity, Consistency, Isolation
and Durability. Recent developments in distributed systems have created the
need of a new notion of transaction, in which remote entities (possibly of dif-
ferent companies) may interact by performing complex activities (which may
require also a human–interaction) that may take minutes, days or weeks. This
increased length of time with respect to ACID transactions, forbids the use of
locks on resources, and hence makes roll–back activities impossible. The alter-
native to roll-back activities in this kind of transactions is the use of compen-
sations, which are activities explicitly programmed to remove the effects of the
actions performed, and may require, for instance, the payment of some kind of
penalty. This new kind of transactions are usually called long–running transac-
tions, but they are also known as Sagas [7], web transactions [10], and extended

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 108–122, 2006.
c© IFIP International Federation for Information Processing 2006

Modeling Long–Running Transactions 109

transactions [9]. Although there is an interest for their support in distributed
object–based middlewares [9], they are studied in particular in the context of
orchestration languages for Web Services (such as BPEL4WS [8] and WSCI [12]).

Web Services are technologies that allow the distribution and the interop-
erability of heterogeneous software components (providing services) over the
Internet. Orchestration languages allow the definition of complex services in
terms of interactions among simpler services. Most orchestration languages of-
fer several primitives for composing and handling services. Since the specifica-
tions of these languages mainly consist in informal textual description of their
constructors, there is a strong interest in the formalization of their semantics
(see [4, 5, 6, 10, 13]). Among these papers, [6, 10] give theoretical foundations to
the fragments of orchestration languages describing long–running transactions.
In particular, [6] identifies three main composition patterns for transactional
activities with compensations, namely sequential composition, parallel composi-
tion, and nesting, and provides a formal semantics for them.

Communicating Hierarchical Machines (CHMs) [2], which are finite state ma-
chines endowed with the ability of refining states and of composing machines
in parallel, seem to be a formalisms suitable to describe transactional activities
and their composition patterns. Time is an important factor in the functioning
of distributed systems, where communication may take time and deadlines may
be used to counteract failure of remote components. Besides, transactions may
have deadlines imposed by the requested QoS. Hence, to describe transactions a
formalism is needed that also allows the representation of time constraints. After
the seminal paper by Alur and Dill [1] many models of Timed Automata have
been proposed and used to describe systems in which time cannot be abstracted.
Furthermore, automata based formalisms are amenable to formal analysis, such
as model checking.

In this paper we define the model of Communicating Hierarchical Transaction-
based Timed Automata (CHTTAs). CHTTAs take from CHMs [2] the abilities of
composing machines in parallel and hierarchically, but differ from CHMs insofar
as they have two different terminal states (to describe different terminations
of transactions) and provide different communication mechanisms. Moreover,
CHTTAs have a notion of explicit time. We give a flattening procedure in order
to obtain a timed automaton from a CHTTA, and prove the decidability of the
reachability problem for CHTTAs. The class of flattened CHTTAs is a subclass
of Timed Automata, hence our flattening procedure may be used in order to
verify properties of CHTTAs with model checkers defined for timed automata
(e.g. Kronos [14] and UPPAAL [3]).

We propose CHTTAs to describe transactional activities and define operations
for composing CHTTAs which correspond to compositional patterns of transac-
tional activities. In particular, among the patterns identified in [6], we focus on
the sequential and parallel composition patterns for transactional activities. We
give formal representations of these patterns in terms of CHTTAs and prove their
correctness.As a case study, we model with CHTTAs a typical long–running trans-
action and verify some properties with the UPPAAL model checker [3].

110 R. Lanotte et al.

2 Communicating Hierarchical Timed Automata

Let us assume a finite set of communication channels C with a subset CPub ⊆ C.
As usual, we denote with a! the action of sending a signal on channel a and with
a? the action of receiving a signal on a.

Let us assume a finite set X of positive real variables called clocks. A valuation
over X is a mapping v : X → IR≥0 assigning real values to clocks. Let VX denote
the set of all valuations over X . For a valuation v and a time value t ∈ IR≥0, let
v + t denote the valuation such that (v + t)(x) = v(x) + t, for each clock x ∈ X .

The set of constraints over X , denoted Φ(X), is defined by the following
grammar, where φ ranges over Φ(X), x ∈ X , c ∈ Q and ∼∈ {<,≤,=, �=, >,≥}:

φ ::= x ∼ c |φ ∧ φ | ¬φ |φ ∨ φ | true

We write v |= φ when the valuation v satisfies the constraint φ. Formally, v |=
x ∼ c iff v(x) ∼ c, v |= φ1 ∧ φ2 iff v |= φ1 and v |= φ2, v |= ¬φ iff v �|= φ,
v |= φ1 ∨ φ2 iff v |= φ1 or v |= φ2, and v |= true.

Let B ⊆ X ; with v[B] we denote the valuation resulting after resetting all
clocks in B. More precisely, v[B](x) = 0 if x ∈ B, v[B](x) = v(x), otherwise.
Finally, with 0 we denote the valuation with all clocks reset to 0, namely 0(x) = 0
for all x ∈ X .

Definition 1. A Transaction-based Timed Automaton (TTA) is a tuple A =
(Σ,X, S,Q, q0, δ), where:

– Σ ⊆ {a!, a? | a ∈ C} is a finite set of labels;
– X is a finite set of clocks;
– S is a finite set of superstates;
– Q = L ∪ S ∪ {',⊗}, where L is a finite set of basic states and ' and ⊗

represent the special states commit and abort, respectively;
– q0 ∈ L is the initial state;
– δ ⊆ (L×Σ∪{τ}×Φ(X)×2X×Q)∪(S×{�,�}×Q) is the set of transitions.

Superstates are states that can be refined to automata (hierarchical composi-
tion). Note that from superstates in S only transitions with labels in {�,�} can
be taken. We assume that ' and ⊗ are the final states of a TTA.

A TTA is said to be flat when it has no refinable states.

Definition 2 (Flat TTAs). A TTA A = (Σ,X, S,Q, q0, δ) is flat if S = ∅.
Inspired by the definition of CHMs (see [2]) we now introduce CHTTAs as an
extension of TTAs allowing superstate refinement and parallelism.

Definition 3. Let ΣPub = {a!, a? | a ∈ CPub} and A = {A1, . . . , An} be a
finite set of TTAs, with Ai = (Σi, X i, Si, Qi, qi

0, δ
i) and such that there exists m

(m < n) such that Aj is flat if and only if j ≥ m. A Communicating Hierarchical
Transaction-based Timed Automaton (CHTTAΣPub

A) is given by the following
grammar:

CHTTAΣP ub
A ::= 〈Ai, μ〉

∣∣ CHTTAΣPub
A ||CHTTAΣP ub

A

where μ is a hierarchical composition function μ : Si → CHTTAΣPub

{Ai+1,...,An}.

Modeling Long–Running Transactions 111

Parallelism allows concurrent execution of automata. Hierarchical composition
allows refining superstates. Automata executed in parallel may communicate by
synchronizing transitions labeled with a sending and a receiving action on the
same channel. Communication performed using non public channels are only
allowed between components inside the same superstate or at top–level. Com-
munication performed by using public channels have no restrictions.

Note that, by definition of A and μ, cyclic nesting is avoided. In the fol-
lowing, if it does not give rise to ambiguity, we may write CHTTA instead of
CHTTAΣPub

A . Finally, if A is a flat TTA, in 〈A, μ〉 μ is an empty function.

Example 1. In Figure 1 we show an example of CHTTA. Superstates of the
CHTTA are depicted as boxes and basic states as circles; initial states are repre-
sented as vertical segments. Transitions are labeled arrows in which labels τ and
constraints true are omitted. Containment into boxes represents hierarchical
composition, while parallel composition is represented by juxtapositions. The
CHTTA in the figure is formally defined as 〈(∅, ∅, {s1}, {q0, s1,',⊗}, q0, δ), μ〉
where δ = {(q0, τ, true, ∅, s1), (s1,�,'), (s1,�,⊗)}, and μ(s1) = A1||A2. A1
and A2 are defined as A1 = 〈({a!, b?}, {x}, ∅, {q0, q1,',⊗}, q0, δ1) and A2 =
〈({a?, b!}, ∅, ∅, {q0, q2,',⊗}, q0, δ2), where δ1 ={(q0, a!, true, {x}, q1), (q1, b?, x <
5, ∅,'), (q1, τ, x ≥ 5, ∅,⊗)} and δ2 = {(q0, a?, true, ∅, q2), (q2, b!, true, ∅,')}.

a!

x:=0

b?

x<5

x>=5

a? b!

s1

q1

q2

Fig. 1. Example of CHTTA

2.1 Semantics of CHTTAs

Configurations of CHTTAs are pairs tc = (c, ν) where c, the untimed config-
uration, represents the currently active states, and ν, the composed valuation,
represents the current clock valuations.

The configuration of a CHTTA without parallel components, when the cur-
rently active state is a basic state, is a pair (q, v) with q the currently active
state, and v the automaton clock valuation. We represent with q.c the configu-
ration where q is a superstate and c is the untimed configuration of μ(q), and
with v.ν the composed valuation where v is the clock valuation of the automaton
having q as superstate and ν is the composed valuation of the clocks of μ(q). We
denote with c1; c2 the untimed configuration of the parallel composition of two
CHTTAs having c1 and c2 as untimed configurations. Analogously, we denote
with ν1; ν2 the composed valuation of the parallel composition of two CHTTAs
having ν1 and ν2 as composed valuations.

112 R. Lanotte et al.

Formally, the set of configurations Conf(A) of a CHTTA A is inductively
defined as follows:

– if A = 〈(Σ,X, S,Q, q0, δ), μ〉, then Conf(A) = {(Q\S)×VX} ∪ {(q.c, v.ν) |
q ∈ S ∧ v ∈ Vx ∧ (c, ν) ∈ Conf(μ(q))};

– if A = A1||A2 then Conf(A) = {(c1; c2, ν1; ν2) | (c1, ν1) ∈ Conf(A1) ∧
(c2, ν2) ∈ Conf(A2)}.

For a composed valuation ν and a time value t ∈ IR≥0, let ν+t denote the com-
posed valuation such that (v+t)(x) = v(x)+t, for each valuation v occurring in ν.

The initial configuration of A, denoted Init(A) ∈ Conf(A), is the config-
uration (c, ν) such that each state occurring in c is an initial state and each
valuation occurring in ν is 0.

We give a semantics of CHTTAs in SOS style as a labeled transition system
where states are pairs (A, tc) with A ∈ CHTTAΣPub

A and tc ∈ Conf(A), and
labels are in IR>0 ∪

⋃
i Σ

i ∪ {τ}.
In order to simplify the SOS semantics for CHTTAs we introduce a notion

of structural equivalence for pairs (A, tc), accounting for commutativity and
associativity of parallelism. The relation ≈ is the least equivalence relation sat-
isfying (A1||A2, tc1; tc2) ≈ (A2||A1, tc2; tc1) and (A1||(A2||A3), tc1; (tc2; tc3)) ≈
((A1||A2)||A3, (tc1; tc2); tc3). Moreover, given an untimed parallel configuration
c = c1; . . . ; cn we use the following notations: c ≈ ' if for ∀i.ci = ', and c ≈ ⊗
if for ∃i.ci = ⊗ ∧ ∀i �= j.cj ∈ {',⊗}.

Definition 4 (Semantics of CHTTAs). Given A ∈ CHTTAΣPub

A , the seman-
tics of a A is the least labeled transition relation α−→ over {A}×Conf(A) closed
with respect to structural equivalence and satisfying the rules in Figure 2.

Rule (T) allows the elapsing of time for a generic CHTTA A. We note that the
time t is the same for any TTA composing A.

Rules (C1) and (C2) describe the behavior of a flat TTA. From a configuration
(q, v), the step is performed due to a transition (q, α, φ,B, q′) such that the
condition φ is satisfied by v. After the step, the flat TTA is in the configuration
composed by state q′ and where clocks in B are reset. If q′ is a superstate (rule
(C2)), then the CHTTA μ(q′) becomes active inside q′.

The synchronization step is described by rule (P2). By definition of the rela-
tion ≈ also CHTTAs that are not neighborhood in the parallel composition can
communicate.

Rules (C3) and (P1) allow expanding the step of a TTA which is a component
of a CHTTA. Rule (C3) deals with the hierarchical composition and rule (P1)
deals with the parallel composition. The label of the step is either τ or a public
channel. Hence, thanks to rule (P2), communication between TTAs in parallel
is allowed both for private and public channels, while for TTAs in different
superstates the communication is allowed only if the channel is public. Moreover,
we note that the step we are expanding cannot be a time step. Hence, time steps

Modeling Long–Running Transactions 113

t ∈ IR>0

(A, (c, ν)) t−→ (A, (c, ν + t))
(T)

(q, α, φ, B, q′) ∈ δ v |= φ q′ �∈ S

(〈A, μ〉, (q, v)) α−→ (〈A, μ〉, (q′, v[B]))
(C1)

(q, α, φ, B, q′) ∈ δ v |= φ q′ ∈ S Init(μ(q′)) = (c, ν)

(〈A, μ〉, (q, v)) α−→ (〈A, μ〉, (q′.c, v[B].ν))
(C2)

(μ(q), (c, ν)) α−→ (μ(q), (c′, ν′)) α ∈ ΣPub ∪ {τ}
(〈A, μ〉, (q.c, v.ν)) α−→ (〈A, μ〉, (q.c′, v.ν′))

(C3)

(A1, (c1, v)) α−→ (A1, (c′
1, v′)) α ∈ ΣPub ∪ {τ}

(A1||A2, (c1; c2, v)) α−→ (A1||A2, (c′
1; c2, v′))

(P1)

(A1, (c1, v)) a!−→ (A1, (c′
1, v′)) (A2, (c2, v′)) a?−→ (A2, (c′

2, v′′))

(A1||A2, (c1; c2, v)) τ−→ (A1||A2, (c′
1; c′

2, v′′))
(P2)

c ≈ (q, �, q′) ∈ δ q′ �∈ S

(〈A, μ〉, (q.c, v.ν)) τ−→ (〈A, μ〉, (q′, v))
(Com1)

c ≈ (q, �, q′) ∈ δ q′ ∈ S Init(μ(q′)) = (c′, ν′)

(〈A, μ〉, (q.c, v.ν)) τ−→ (〈A, μ〉, (q′.c′, v.ν′))
(Com2)

c ≈ ⊗ (q, �, q′) ∈ δ q′ �∈ S

(〈A, μ〉, (q.c, v.ν)) τ−→ (〈A, μ〉, (q′, v))
(Ab1)

c ≈ ⊗ (q, �, q′) ∈ δ q′ ∈ S Init(μ(q′)) = (c′, ν′)

(〈A, μ〉, (q.c, v.ν)) τ−→ (〈A, μ〉, (q′.c′, v.ν′))
(Ab2)

Where we assume A = (Σ, X, S, Q, q0, δ) except for rule (T) where A is a generic CHTTA.

Fig. 2. SOS semantics for CHTTAs

can be performed only by the root, implying that the time elapsed is the same
for each TTA composing the CHTTA we are considering.

Each execution of a superstate terminates with either a commit or an abort
state. Rules (Com1) and (Com2) deal with the case in which the commit of the
superstate takes the TTA to a basic state or to a superstate, respectively, and
rules (Ab1) and (Ab2) deal with the case in which the abort of the superstate
takes the TTA to a basic state or to a superstate, respectively.

Given a string w = α1 . . . αm, we will write (A, (c, ν)) w=⇒ (A, (c′, ν′)) to
denote the existence of a sequence of steps (A, (c, ν)) α1−→ . . .

αm−→ (A, (c′, ν′)).
We denote with |w| = m the length of w and with w[i] = αi the i−th label.

With L(A,ΣV) we denote the language accepted by a CHTTA A w.r.t. a
set of visible actions ΣV ⊆ ΣPub. Namely, L(A,ΣV) = {w ∈ ({τ} ∪ ΣV ∪
IR>0)∗ | (A, Init(A)) w=⇒ (A, (', ν′)) or (A, Init(A)) w=⇒ (A, (⊗, ν′))}.

The following proposition holds.

Proposition 1. The class of flat TTAs is equivalent to the class of Timed
Automata.

114 R. Lanotte et al.

3 Deciding Reachability for CHTTAs

Reachability is interesting for proving properties. For timed Automata the reach-
ability problem is PSPACE-COMPLETE. In our case the problem is still decid-
able, but becomes EXPSPACE-COMPLETE.

Firstly, we give an algorithm for flattening a generic CHTTA, hence the reach-
ability problem can be checked on the Timed Automaton resulting by the flat-
tening. Due to the complexity of the flattening, the reachability problem for
CHTTAs is EXPSPACE-COMPLETE. The increase of complexity is caused by
the communication between different superstates, but it is not caused by the
number of clocks.

3.1 Flattening CHTTAs

Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} and φ be a formula in Φ(X). With
φ[Y := X] we denote the formula where each clock yi is replaced with xi. More-
over, with Xi,j we denote the renaming of clocks x in X with clocks xi,j , more
precisely Xi,j = {xi,j

1 , . . . , xi,j
n }.

Given a CHTTA A with w(A) we denote the maximum width of the CHTTAs
composing A. Namely:

w(〈A1, μ1〉‖ . . . ‖〈Am, μm〉) = max{m,w(〈A1, μ1〉), . . . , w(〈Am, μm〉)},

where w(〈A, μ〉) = max{w(μ(q)) | q ∈ S}.
Moreover, d(A) denotes the maximum depth of A. Namely:

d(〈A1, μ1〉‖ . . . ‖〈Am, μm〉) = max{d(〈A1, μ1〉), . . . , d(〈Am, μm〉)},

where d(〈A, μ〉) = 1 + max{d(μ(q)) | q ∈ S}.

Definition 5. Let A = {A1, . . . , An}, with Ai = (Σi, X i, Si, Qi, qi
0, δ

i), be a set
of TTAs, and A ∈ CHTTAΣP ub

A . Given ΣV ⊆ ΣPub, with Flat(A,ΣV) we denote
the flat TTA (Σ,X, ∅, Q, q0, δ) such that:

– Σ = ΣV ;
– X =

⋃
i∈[1,d(A)]

⋃
j∈[1,w(A)] Xi,j;

– Q = {c | (c, ν) ∈ Conf(A)};
– q0 = c0 such that Init(A) = (c0, ν) is the initial configuration of A;
– δ is such that:

• (c, τ, true, ∅, c′) is in δ if there exists a step (A, (c, ν)) τ−→ (A, (c′, ν′))
triggered by either a commit or an abort transition;

• (c, α, φ,B, c′) is in δ if there exists a step (A, (c, ν)) α−→ (A, (c′, ν′)), with
α ∈ ΣV triggered by the transition (q, α, φ,B, q′) of a TTA Ai;

• (c, τ, φ,B, c′) is in δ if there exists a step (A, (c, ν)) τ−→ (A, (c′, ν′))
triggered by the transition (q1, a!, φ1, B1, p1) of the TTA Ai at position
i1, j1 and by the transition (q2, a?, φ2, B2, p2) of the TTA Aj at position
i2, j2 such that φ = (φ1[X i := (X i)i1,j1]) ∧ (φ2[Xj := (Xj)i2,j2]) and
B = (B1)i1,j1 ∪ (B2)i2,j2 .

Modeling Long–Running Transactions 115

Proposition 2. Let A = {A1, . . . , An} and A ∈ CHTTAΣP ub

A where each Ai has
at most h states and k clocks. The reachability problem for A can be computed
in O(hw(A)d(A) · 2k·d(A)·w(A)).

Hence, the reachability problem for a CHTTA A is EXPSPACE-COMPLETE
w.r.t. m, w(A) and d(A). As it happens for the reachability problem for Timed
Automata (see [1]), the number of clocks does not influence the complexity.

Proposition 3. Let A = {A1, . . . , An} and A ∈ CHTTAΣP ub

A where each Ai has
at most m states. The reachability problem for A is EXPSPACE-COMPLETE
w.r.t. m, w(A) and d(A).

4 Compositional Patterns for Long–Running Transactions

A long–running transaction is composed by atomic activities (called subtrans-
actions or simply activities) that should be executed completely. Atomicity for
activities means that they are either successfully executed (committed) or no
effect is observed if their execution fails (aborted). Activities may be composed
by other subtransactions.

Partial executions of a long–running transaction are not desirable, and, if
they occur, they must be compensated for. Therefore, all the activities Ai in a
long–running transaction have a compensating activity Bi that can be invoked
to repair from the effects of a successful execution of Ai if some failure occurs
later. Compensations are assumed to be transactions that always complete their
execution successfully (they always commit and can never abort).

We assume that both activities and compensations are described as CHTTAs,
and we denote with A	B the association of compensation B with activity A.

Following the approach in [6], we identify some composition patterns for trans-
actional activities with compensations. In particular, we focus on the sequential
composition pattern and on the parallel composition one.

We denote with A1	B1 ·A2	B2 the sequential composition of two transactional
activities with compensations, and we use the standard parallel composition of
CHTTAs also to describe parallel composition of transactional activities with
compensations. We show that the compositional patterns on transactional ac-
tivities can be formulated as compositions of CHTTAs.

4.1 Sequential Transactions

Activities A1, . . . , An composing a sequential transaction are assumed to be exe-
cuted sequentially, namely, when activity Ai is committed, activity Ai+1 starts its
execution. Compensation activities B1, . . . , Bn are associated with each activity
Ai. Transactions of this kind must be guaranteed that either the entire sequence
A1, . . . , An is executed or the compensated sequence A1, . . . , Ai, Bi, . . . , B1 is
executed for some i < n. The first case means that all activities in the sequence
completed successfully, thus representing a successful commit of the whole trans-
action. The second case stands for the abort of activity Ai+1; hence, all the

116 R. Lanotte et al.

activities already completed (A1, . . . , Ai) are recovered by executing the com-
pensating activities (Bi, . . . , B1).

In Figure 3 (a) we show the CHTTA A = [[A1	B1 ·A2	B2]]S modeling the pat-
tern of sequential transactions.We consider just two activitiesA1, A2 and compen-
sationsB1, B2. Note that, since the transaction is composed by only two activities,
the compensation B2 is not executed. This is because compensations are invoked
only for activities that complete successfully, however, if activityA2 commits, then
the whole transaction successfully commits and no compensation needs to be in-
voked. The compensation B of the whole transactional activity A is defined as the
sequential execution of the compensations B2 and B1 (see Figure 3 (b)).

A1 A2

B 1

B2

B 1

(b)(a)

Fig. 3. Pattern for Sequential Transactions

Definition 6. Given A1, A2, B1, B2 ∈CHTTAΣPub

A we define the sequential com-
position of activities A1, A2 with compensations B1, B2 as the CHTTAΣP ub

A A =
[[A1 	B1 · A2 	B2]]S = 〈(∅, ∅, {s1, s2, s3}, {s1, s2, s3, q0',⊗}, q0, δ), μ〉 where δ =
{(q0, τ, true, ∅, s1), (s1,�, s2), (s1,�,⊗), (s2,�,'), (s2,�, s3), (s3,�,⊗)} and μ
= {(s1, A1), (s2, A2), (s3, B1)}. The compound compensation of A is defined as the
CHTTAΣPub

A B = [[B1 · B2]]SC = 〈(∅, ∅, {s1, s2}, {s1, s2, q0,',⊗}, q0, δ′), μ′〉 with
δ′ = {(q0, τ, true, ∅, s2), (s2,�, s1), (s1,�,')} and μ′ = {(s1, B1), (s2, B2)}.
Considering only two activities in the sequential pattern is not a real limitation,
since the case of n activities may be reduced by iteratively grouping the activities
in pairs. Intuitively, A = [[A1	B1 · A2	B2 · A3	B3]]S = [[A′	B · A3	B3]]S where
A′ = [[A1	B1 · A2	B2]]S and B is the compensation for the whole sequential
subtransaction A′ (see Figure 4).

In order to prove the correctness of our definitions of compositional patterns,
we introduce the notion of wrapped CHTTAs. Intuitively, for a CHTTA A, we
call wrapper the automaton AM which performs the special action commitA!
before reaching the final commit state.

Given a CHTTA A, AM = 〈({commitA!}, ∅, {s}, Q, q0, δ), μ〉 is the wrapped
CHTTA of A with set of states Q = {s, q0, q1,',⊗}, set of transitions δ =
{(q0, τ, true, ∅, s), (s,�, q1), (s,�,⊗), (q1, commitA!, true, ∅,')} and μ(s) = A.
In Figure 5 we show the CHTTA AM .

The next lemma derives immediately from the definition of AM .

Lemma 1. Given a CHTTA A, (A, (c, ν)) w=⇒ (A, (c′, ν′)), with c �≈ ' and c �≈
⊗ and either c′ ≈ ' or c′ ≈ ⊗ if and only if (AM , (s ·c, ε ·ν) w′

=⇒ (AM , (s · ĉ, ε · ν̂)),
where (given z̃ ∈ {IR>0}∗):

Modeling Long–Running Transactions 117

A3

A1 A2

B1

B2 B1

Fig. 4. Composing Sequential Transactions

A

commit_A!

Fig. 5. AM

{
w′ = z̃ · τ · w · τ · commitA! and ĉ = ' if c′ ≈ '
w′ = z̃ · τ · w · τ and ĉ = ⊗ if c′ ≈ ⊗

Let us assume ΣV = {commitA1 !, commitB1 !, . . . , commitAn !, commitBn !}.

Theorem 1 (Correct Completion). Given A = [[AM
1 	BM

1 · . . . · AM
n 	BM

n]]S,
(A, Init(A)) w=⇒ (A, (', ν)) if and only if w ∈ L(A,ΣV) and w = x̃1 ·commitA1 !·
. . . · x̃n · commitAn ! · x̃n+1 where x̃i ∈ ({τ} ∪ IR>0)∗.

Theorem 2 (Correct Compensation). Given A = [[AM
1 	BM

1 ·. . .·AM
n 	BM

n]]S,
(A, Init(A)) w=⇒ (A, (⊗, ν)) if and only if, w ∈ L(A,ΣV) and, for some k ∈
[1, n], w = x̃1 · commitA1 ! · . . . · x̃k−1 · commitAk−1 ! · x̃′

k−1 · commitBk−1 ! · . . . · x̃′
1 ·

commitB1 ! · x̃′ where x̃i, x̃
′
i ∈ ({τ} ∪ IR>0)∗.

4.2 Parallel Transactions

If activitiesA1, . . . , An composing a parallel transaction are executed concurrently,
the whole transaction terminates when all the activities Ai complete their execu-
tion. Again, we assume compensation activities B1, . . . Bn. If all the activities ter-
minate successfully then the whole transaction reaches a commit state. If some Ai

aborts, then compensation activities should be invoked for the activities that com-
pleted successfully. In this latter case, the result of thewhole transaction is “abort”.

The pattern for parallel transactions is shown in Figure 6. As for sequential
transactions, we consider only two activities A1, A2 with compensations B1, B2
composed in parallel, thus resulting in the CHTTA A = [[A1	B1||A2	B2]]P of
Figure 6. We remark that, by the semantics of CHTTAs, the parallel operator
|| is assumed to be commutative and associative. In such a pattern, activities
A1 and A2 are executed concurrently together with a controller that invokes
compensations when one of the two activities commits and the other aborts.

118 R. Lanotte et al.

A1

com1!

ab1!

A2

com2!

ab2!

com1?

ab2?

ab1?

com1?

com1?

ab2?

ab2?

B 1

B 2

ab2?

ab1?

com2?

com2?

com2?

B 1 B 2

(a)

(b)

Fig. 6. Pattern for Parallel Transactions

Definition 7. Given A1, A2, B1, B2 ∈ CHTTAΣPub

A we define the parallel compo-
sition of activities A1 and A2 with compensations B1 and B2 as the CHTTAΣPub

A
A = [[A1	B1||A2	B2]]P = 〈(∅, ∅, {s}, {s, q0',⊗}, q0, δ), μ〉 with transitions δ =
{(q0, τ, true, ∅, s), (s,�,'), (s,�,⊗)}, and μ(s) = A′||A′′||C, where A′ and A′′

are the two CHTTAs depicted in Figure 6 (a) contained in the superstate and
referring to activities A1 and A2, and C is the compensation controller shown
on the right part of the superstate. The compound compensation of A is defined
as the CHTTAΣPub

A B = [[B1||B2]]PC = 〈(∅, ∅, {s}, {s, q0,',⊗}, q0, δ′), μ′〉 with
δ′ = {(q0, τ, true, ∅, s), (s,�,')} and μ′(s) = B′||B′′, where B′ and B′′ are the
two CHTTAs in Figure 6 (b) referring to B1 and B2 respectively.

As for sequential transactions, considering only two activities in the parallel
pattern is not a limitation, since the case of n activities may be reduced by
iteratively grouping the activities in pairs. For instance, A = [[A1 	B1||A2 	
B2||A3 	 B3]]P = [[A′ 	 B||A3 	 B3]]P where A′ = [[A1 	 B1||A2 	 B2]]P and B
is the compensation for the whole parallel subtransaction A′. Given B1 and
B2, we define the compensation B of A′ as the concurrent execution of the
compensations B1 and B2 (see Figure 6 (b)).

Theorem 3 (Correct Completion). Given A = [[AM
1 	BM

1 || . . . ||AM
n 	BM

n]]P ,
(A, Init(A)) w=⇒ (A, (', ν)) if and only if, w ∈ L(A,ΣV) and ∀i ∈ [1, n].∃!
j ∈ [1, |w|]. w[j] = commitAi !.

Theorem 4 (Correct Compensation). Given A = [[AM
1 	 BM

1 || . . . ||AM
n 	

BM
n]]P , (A, Init(A)) w=⇒ (A, (⊗, v)) if and only if w ∈ L(A) and, there exists

Commited ⊂ {A1, . . . , An} such that ∀Ai �∈ Committed w[j] �= commitAi ! and
∀Ai ∈ Committed ∃! j ∈ [1, |w|[such that w[j] = commitAi !∧∃! k ∈]j, |w|] such
that w[k] = commitBi !.

Modeling Long–Running Transactions 119

4.3 Long–Running Transactions

Sequential and parallel transactions may be composed in order to define com-
plex transactions. Hence, resorting to the patterns of sequential and parallel
transactions, we give the definition of long–running transactions.

Definition 8 (Long–running Transaction). Given activities A1, . . . , An ∈
CHTTAΣPub

A and compensations B1, . . . , Bn ∈ CHTTAΣP ub

A , a long–running
transaction is given by the following grammar:

T ::= Ai	Bi

∣∣ T · T
∣∣ T ||T.

Now, we need to introduce an encoding function [[·]] → A	B that takes in input
a long–running transaction and returns the CHTTAs A and B where A is the
compound CHTTA modeling the transaction and B its compensation. We define
[[·]] recursively as follows:

– [[Ai	Bi]] = Ai	Bi,
– [[T1 · T2]] = [[A1	B1 ·A2	B2]]S	[[B1 ·B2]]SC , where Ai	Bi = [[Ti]] for i ∈ [1, 2],
– [[T1||T2]] = [[A1	B1||A2	B2]]P	[[B1||B2]]PC , where Ai	Bi = [[Ti]] for i ∈ [1, 2].

Since the building blocks of the encoding function are the patterns of sequen-
tial and parallel transactions, the correctness of [[·]] is given by Theorems 1– 4.

Given a long–running transaction T , we define the top–level of T (denoted
top(T)) as the CHTTA A such that [[T]] = A	B.

Modeling long–running transactions with CHTTAs allows verifying properties
by model checking. In fact, given a long–running transaction T obtained as in
Definition 8, and a set of visible actions ΣV , we may flatten the CHTTA top(T)
according to Definition 5, and then verify properties of the transaction by model
checking on the timed automaton Flat(top(T), ΣV).

5 Case Study: A Double Request

We model a typical all–or–nothing scenario in which a client performs two con-
current requests to two different servers, waits for replies, and sends back ac-
knowledgements either to both servers (if it receives both replies) or to none of
them (if it receives at most one reply). A similar scenario in a realistic context
is given in [11], where a typical e–commerce application is described in which a
customer of an on–line shop orders two products which are provided by two dif-
ferent stores. In that case, acknowledgements are sent (and products are bought)
only if both products are available, instead, in our case, acknowledgements are
sent only if replies are received before given times.

A single request/reply activity performed by the client is described by the
transaction given in Figure 7 (a). We denote such a transaction with Ai	Bi. The
client sends the request to the server by synchronizing on channel req i and waits
for the reply as a synchronization on channel rep i. The time deadline for the
reply is Ti. This is expressed as a constraint on the value of clock xi which is set

120 R. Lanotte et al.

stop_i!
x:=0

rep_i?

x<Ti

x>=Ti

cancel_i! req_i?

y:=0

rep_i!

y>Ri

 stop_i?
(a) (b)

req_i!

ack_i?

cancel_i?

ack_2!
(c)

ack_1!

Fig. 7. A Double Request

to zero when the request is sent. If the reply is received in time, the transaction
commits, otherwise a stop message is sent to the server as a synchronization
on channel stop i, and the transaction is aborted. The compensation of this
transaction consists in a synchronization on channel cancel i, which corresponds
to sending an undo message to the server.

A server is modeled by the automaton given in Figure 7 (b). We denote such
an automaton with Si. The server receives a request and sends the reply by
synchronizing on the proper channels, and it spends a time between these two
synchronizations which is greater than Ri. This amount of time models the time
spent by the server to satisfy the request of the client. Then, the server reaches
a state in which it waits for either an acknowledge or an undo message from the
client. These two communications are modeled as synchronizations on channels
ack i and cancel i, respectively, and lead to commit and abort of the server
activity, respectively.

The activity of sending acknowledgments to two servers S1 and S2 is modeled
by the transaction given in Figure 7 (c). We denote such a transaction with
Aack	Back. Finally, the whole client transaction in which two requests are sent
to two different servers and the corresponding acknowledgments are sent if both
requests are satisfied, is modeled by the long–running transaction T = (A1 	
B1||A2	B2) · Aack	Back and the whole system in which both the client and the
two servers are modeled is SY STEM = T ||S1||S2.

To verify properties of this system, we consider the CHTTA top(T), and then
we compute the flat TTA T ′ = Flat(top(T), ΣV), where ΣV = {a!, a? | a ∈
{reqi, repi, stopi, canceli, acki}}. Now, since S1 and S2 are both flat, we have that
T ′||S1||S2 can be used as an input for the UPPAAL model checker. In order to
reduce the size of the model we remove unnecessary τ transactions, and in order
to avoid the execution of paths containing an infinite sequence of timed transitions
we include time invariants in the states of the automaton modeling the client.

In Table 1 we show the results of the model checking. We have verified eight
properties, and each property has been verified three times: once by setting
both timeouts T1 and T2 greater than R1 and R2, respectively, once by setting
T1 < R1 and T2 > R2, and once by setting both T1 and T2 smaller than R1 and
R2, respectively.

Properties are expressed as logical formulas using the operators accepted by
the UPPAAL model checker. A logical formula may have one of the following

Modeling Long–Running Transactions 121

Table 1. Results of the model checking

T1 > R1 T1 < R1 T1 < R1
T2 > R2 T2 > R2 T2 < R2

1. A♦(T. ∨T.⊗) true true true
2. (A1. ⊗ ∨A2.⊗) � T.⊗ true true true
3. (A1. ∧A2.) � T. true true true
4. T. � (S1. ∧S1.) true true true
5. x1 ≥ T1 � T.⊗ true true true
6. x2 ≥ T2 � T.⊗ true true true
7. E♦T. true false false
8. E♦T.⊗ true true true

forms: E♦φ,E�φ,A♦φ,A�φ and φ � ψ, where φ and ψ are state formulas,
namely conditions which could be satisfied by a state. In particular: E♦φ repre-
sents reachability: it asks whether φ is satisfied by some reachable state; E�φ
says that there should exists a maximal path such that φ is always true; A♦φ
says that φ is eventually satisfied in all paths; A�φ expresses that φ should be
true in all reachable states; finally, φ � ψ means that whenever φ is satisfied,
then eventually (in the continuation of the path) ψ will be satisfied.

Properties 1–3 express the correctness of the encoding of long–running trans-
actions into automata. These properties must be satisfied for any setting of the
parameters. In particular, property 1 says that either the commit or the abort
states of the transaction (denoted T.' and T.⊗, respectively) must be eventually
reached. Property 2 requires that if at least one of the abort states of the parallel
activities A1 and A2 is reached, then the whole transaction must reach its abort
state, and property 3 requires that if both parallel activities A1 and A2 reach
their commit states, then the whole transaction must reach its commit state.

Properties 4–7 express the correctness of the modeling of the scenario. As
before, these properties must be satisfied for any setting of the parameters.
Property 4 says that if the transaction reaches a commit state, then eventually
both servers must reach their commit states. Properties 5 and 6, instead, say
that if one of the two clocks of the parallel activities A1 and A2 becomes greater
than its deadline, then the whole transaction must reach its abort state.

Finally, properties 8 and 9 express that the commit and abort states of the
transaction can be reached, for different settings of the parameters. In particular,
the commit state can be reached only if both the timeouts T1 and T2 are greater
than the times R1 and R2 spent by the two servers. The abort state, instead,
can be reached with any setting of the parameters. This is true because R1 and
R2 are lower bounds, hence a server may spend more time than its minimum
time, and may exceed the corresponding deadline in the transaction.

6 Conclusions

We studied some pattern for the composition of activities in long–running trans-
actions. In particular we focused our attention on the sequential and parallel pat-
tern. In [6] another pattern is identified allowing to deal with nested transactions.
Intuitively, a nested transaction is composed by a hierarchy of subtransactions as

122 R. Lanotte et al.

activities. In the nested pattern, the top–level transaction completes its activity
when all its sub–transactions terminate. When a transaction aborts, all its sub-
transactions should abort, and the committed subtransactions should be compen-
sated. Nevertheless, a top–level transaction can commit even though some of its
subtransactions have aborted. In [6] the compensation pattern for nested trans-
actions is defined by resorting to a stack where the compensations of each sub-
transactions are stored when the related activities commit. If, at some point, the
supertransactions needs to be compensated, compensations of the subtransactions
are invoked from the stack.

With the model of CHTTAs given in this paper, we may represent the pattern
of nested transaction by defining a compensation controller which should be put
in parallel with the top–level transaction. While the patterns for sequential and
parallel transactions are expressed in a rather natural way by CHTTAs, it is not
so for the latter mechanism. Hence, we plan to enrich the model of CHTTAs
with a notion of memory to store compensations of committed subtransactions.

For a version of this paper with complete proofs see [15].

References

1. R. Alur and D. L. Dill. “A Theory of Timed Automata”. Theoretical Computer
Science, volume 126, pages 183–235, 1994.

2. R. Alur, S. Kannan, and M. Yannakakis. “Communicating Hierarchical State Ma-
chines”. ICALP’99, LNCS 1644, pages 169–178, 1999.

3. T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David, A. Fehnker,
T. Hune, B. Jeannet, K. G. Larsen, M. O. Moeller, P. Pettersson, C. Weise, and
W. Yi. “Uppaal-now, next and future”. LNCS 2067, pages 99–124, 2000.

4. B. Benatallah and R. Himadi. “A Petri Net–Based Model for Web Service Com-
position”. ADC’03, Australian Computer Society, pages 191–200, 2003.

5. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. “Formalizing Web Services
Choreographies”. WS–FM’04, ENTCS 105, pages 73-94, 2004.

6. R. Bruni, H. Melgratti, and U. Montanari. “Theoretical Foundations for Compen-
sations in Flow Composition Languages”. POPL’05, ACM Press, pages 209–220,
2005.

7. H. Garcia–Molina and K. Salem. “Sagas”. SIGMOD’87, ACM Press, pages 249–
259, 1987.

8. BPEL Specifications: www-128.ibm.com/developerworks/library/ws-bpel/.
9. I. Houston, M.C. Little, I. Robinson, S. K. Shrivastava, and S. M. Wheater. “The

CORBA Activity Service Framework for Supporting Extended Transactions”. Soft-
ware — Practice and Experience, volume 33, number 4, pp. 351–373, 2003.

10. C. Laneve and G. Zavattaro. “Foundations of Web Transactions”. FOSSACS’05,
LNCS 3441, pp. 282–298, 2005.

11. M. Mazzara and S. Govoni. “A Case Study of Web Services Orchestration.”. CO-
ORDINATION’05, LNCS 3454, pp. 1–16, 2005.

12. WSCI Specification. Version 1.0. Available at http://www.w3.org/TR/wsci/.
13. M. Viroli. “Towards a Formal Foundation to Orchestration Languages”. WS–

FM’04, ENTCS 105, pages 51–71, 2004.
14. S. Yovine. “Kronos: A verification tool for real-time systems”. International Journal

on Software Tools for Technology Transfer, volume 1, pages 123–133, 1997.
15. http://www.di.unipi.it/∼troina/fmoods06.pdf.

Transformation Laws for UML-RT

Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota

Centre for Informatics, Federal University of Pernambuco
P.O.Box 7851, CEP 50740-540, Recife-PE, Brazil

{rtr, acas, acm}@cin.ufpe.br

Abstract. With model-driven development being on the verge of be-
coming an industrial standard, the need for systematic development
strategies based on safe model transformations is a demand. Transforma-
tions must take into account changes in both behavioural and structural
diagrams. In this paper, we present a set of transformation laws that
aims to systematise the evolution of semantically well-defined UML-RT
models, with preservation of both static and dynamic aspects. The pro-
posed laws support the transformation of initial abstract analysis models
into concrete design models. Furthermore, we show the seamless applica-
tion of the laws through design activities of the Rational Unified Process
in the development of a case study. Soundness and completeness of the
laws are briefly addressed.

1 Introduction

In Model Driven software Engineering (MDE) [1], the central artifacts, and the
driving force, of a software development are models, rather than code in a pro-
gramming language. As a departure from the general idea that the usefulness
of models are only for documentation or to capture interesting design aspects
during development, the main objective in MDE is that the development process
is driven by the activity of modelling.

The purpose of MDE is combining an architecture of the model roles with
other process activities. In this framework, transformations help to overcome the
challenges of model evolution, allowing restructure of the software with preser-
vation of behaviour; the idea is similar to well-known code transformation tech-
niques like refactorings [2] and refinements [3].

Models are widely expressed using the Unified Modeling Language (UML) [4],
as well as its extensions. In particular, we emphasise the use of UML-RT [5], an
UML profile, which has a clear definition for reactive components and compo-
nent protocols, and is useful to describe concurrent and distributed domains. In
previous work [6] we defined a formal semantics for UML-RT, and illustrated
how model transformations can be verified. We have also explored refinement
notions for UML-RT, together with some large grain transformation rules [7],
which seemed useful to support the evolution and restructure of architectural
UML-RT models.

Here we concentrate on an algebraic presentation of UML-RT. We propose a
set of algebraic laws for the language, focusing on the new elements that it adds

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 123–137, 2006.
c© IFIP International Federation for Information Processing 2006

124 R. Ramos, A. Sampaio, and A. Mota

to UML: active classes (capsules), protocols, ports and connections. The pro-
posed laws express both basic properties of each individual construct, as well as
relationships among them. For instance, the laws permit justifying transforma-
tions of initial abstract models into concrete design models, using consistent steps
with preservation of both static and dynamic model aspects (taking into account
structural and behavioural properties together); this is illustrated through the
development of a case study: a simple manufacturing system. We also address
a notion of completeness, briefly presenting a strategy to reduce an arbitrary
UML-RT model to a extended UML model, entirely based on the laws.

Our work can be considered complementary to others that focus on laws for
UML design elements [8, 9], as well as on component transformations [10]. A
more detailed account of related work is left for the concluding section.

We briefly present an overview of UML-RT, including part of a formal se-
mantics, in the next section. In Section 3, we present a selection of our set of
laws, and address completeness. In Section 4, we show how these laws can be
used to capture and formalise some design guidelines adopted, for example, by
the Rational Unified Process (RUP) [11], through the development of our case
study. Our conclusions and related work are presented in Section 5.

2 UML-RT Semantics Overview

The specification of reactive systems is a complex task, involving data, control
behaviour, communication and architectural modelling aspects. In order to in-
corporate support for all these facets into a widely used language, like UML,
several ROOM concepts have been added to the UML-RT. Although some of
these concepts have also influenced the component model of the recent UML
2.0 [12] version, here we use the UML-RT profile because we consider that its pro-
posed model for active objects is more consolidated than that proposed for UML
2.0. A detailed comparison between UML-RT and UML 2.0 is out of the scope
of this paper; the work reported in [13] presents some problems on the state-
chart specification of UML 2.0. Furthermore, there is commercially established
tool support for UML-RT.

UML-RT, like other Architectural Description Languages, models reactive
systems with active architectural components working concurrently and com-
municating among themselves. Communication is modelled by means of input
and output message exchanges, which can be synchronous or asynchronous; here
we assume synchronous communication. These concepts have been introduced
to UML-RT via four new design elements: capsule, protocol, port and connec-
tor. Capsules (active classes) describe architectural components whose points
of interaction are called ports, which are assembled by connectors and realise
communication signals previously declared in a protocol.

Despite the expressiveness of UML-RT, the rigorous development of non-
trivial applications does not seem feasible without an assigned formal semantics.
In previous work [6] we defined a semantics for UML-RT via mapping into the
formal notation Circus [14], which combines CSP, Z and specification statements.

Transformation Laws for UML-RT 125

Fig. 1. Use Case Diagram

The semantics of Circus is defined in the setting of the Unifying Theories of
Programming [15]; this relational model has proved convenient for reasoning.
Another advantage is that Circus includes the main design concepts of UML-RT
and provides a refinement calculus [3]. Both the semantics and the laws of Circus
have been inspiring to prove laws that we propose for UML-RT.

Throughout this section, an example of a simplified manufacturing system
is used to illustrate the UML-RT notation and semantics. In this system, the
entire application is responsible for processing a number of workpieces, which are
inserted by an operator and made available for retrieving after processed. These
functionalities are presented by the use case diagram in Figure 1. Processing
pieces is an autonomous process that does not require any operator intervention.

In Figure 2, an abstract model of this system is presented. The model is
formed by a set of diagrams and system properties, using diagrams that mainly
represent the following architectural views: static data, dynamic behaviour, and
instance relationships; these are expressed, respectively, by class, state and struc-
ture diagrams. We directly express the system properties by invariants, pre- and
post-conditions in Circus; they could alternatively be expressed in OCL, but an
OCL to Circus mapping is out of the scope of this work.

In the class diagram (top left rectangle) of Figure 2, capsules and protocols are
graphically represented by stereotyped classes with labels Capsule and Protocol.
The diagram emphasises the relationships between the capsules ProdSys and
Storage. The capsule Storage is a bounded reactive buffer that is used to store
objects of class Piece, and ProdSys is used to process these objects. These capsules
have an association to the protocols STO and STI, which are used to govern their
communications: STO declares the input signal req and the output signal output
(used to communicate the request and the delivery of a work piece, respectively),
while STI declares a signal input to store a piece.

By their own nature, capsules provide a high degree of information hiding.
As the communication mechanism is via message passing, all capsule elements
are hidden, including not only attributes, but also methods. The only visible
elements in the capsule are ports, which can be connected to other capsule ports
to establish communication. This decoupling makes capsules highly reusable. In
addition, a capsule can also be defined hierarchically.

A structure diagram describes a capsule structural decomposition in sub-
capsules, showing the capsule interaction through connections among its ports.
We assume that a configuration of the manufacturing system, given by the

126 R. Ramos, A. Sampaio, and A. Mota

Fig. 2. Abstract Analysis Model

structure diagram in Figure 2 (bottom rectangle), is represented by an instance
(man) of capsule Main, which is structurally decomposed into the sub-capsules
sin, son and sys; these sub-capsule instances are created as a consequence of the
association of Main with Storage and ProdSys in the class diagram. Black filled
squares in the capsule instances represent their ports, which are used for commu-
nication (end ports) or just to convey signals to other sub-capsules (relay ports).
Each end port can be connected only to another conjugated port of the same
protocol; conjugated ports are represented by (unfilled) squares and have the
directions of their input and output signals inverted in order to fully assemble
with other ordinary ports. For instance, in the structure diagram, the ports pi
and po are public end ports of ProdSys, while mi and mo are public relay ports
of Main used only to connect ports of sub-capsules to the environment.

The capsule behaviour is described in terms of UML-RT statecharts, which dif-
fer from the standard UML statecharts [16] by including some adaptations to bet-
ter describe active objects. A statechart is composed by transitions and states; in
general, a transition has the form p.e[g]/a, where e is an input signal, p is the port
through which the signal arrives, g is a guard and a is an action. Input signals and a
true guard trigger the transition. As a result, the corresponding action is executed.

We assume that events, guards and actions are expressed using the Circus
notation. For example, in the statechart of Storage, there are two transitions
from state Sa. The one on the right triggers if the req signal arrives through port
so and the buffer is non-empty. The corresponding action declares a variable x
to capture the result of the method remove. This is the way it is done in Circus,
since remove is actually interpreted as a Z Schema. The value of x is then sent
through port so. The syntax for writing these actions related to communication
are also as in CSP. In this work we do not consider capsule inheritance, mainly
because its semantics in UML-RT is not yet well-defined.

Transformation Laws for UML-RT 127

The formal counterpart of the UML-RT concepts are also found in Circus,
since, in this language, concurrent components are represented by processes that
interact via channels. Therefore, capsules and protocols, classifiers with an asso-
ciated behaviour, are semantically mapped into processes, ports into channels,
and classes into Z paragraphs, which act as passive data registers. Furthermore,
connections are represented by means of using common channels. As an example,
consider the following mapping of the capsule Storage into Circus.

| N : N
TSTI ::= input � Piece 	
TSTO ::= req | output � Piece 	
channel si : TSTI, so : TSTO

process Storage =̂ begin
state StorageState =̂ [buffer : seq Piece; size : 0..N | size = #buffer ≤ N]
initial StorageInit =̂ [StorageState ′ | buffer′ = 〈〉 ∧ size′ = 0]
insert =̂ [ΔStorageState; x? : Piece | size < N ∧

buffer′ = buffer � 〈x?〉 ∧ size′ = size + 1]
remove =̂ [ΔStorageState; x ! : Piece | size > 0 ∧ x ! = head buffer ∧

buffer′ = tail buffer ∧ size′ = size − 1]
Sa =̂ (size < N & si?input.x → insert; Sa)

� (size > 0 & so.req → (var x : Piece • remove; so!output.x); Sa)
• StorageInit; Sa
end

In Circus, a process declaration body (delimited by the begin and end key-
words) is composed of a Z state schema, action paragraphs and a main action
(delimited after the • symbol), which defines the process behaviour; action para-
graphs are used to structure the behaviour of a main action and to express data
operations. In this specification, the maximum size of the buffer is a positive con-
stant N . The Storage process takes its inputs and supplies its outputs through
the channels si and so, respectively. The free types TSTI and TSTO categorise
the values communicated by these channels. In our example, the process Storage
encapsulates two state components in the Z schema StorageState: an ordered list
buffer of contents and the size of this list. Initially, buffer is empty and, therefore,
its size is zero; this is specified as a state initialisation action StorageInit . Pre-
and postconditions of methods, and state invariants play a corresponding role
as annotations in the model; they have not been included in Figure 2 for con-
ciseness. The main action initialises the buffer and then acts like the action Sa,
repeatedly offering the choice of input and req, like Sa in the statechart of Storage
(Figure 2). The main action represents the topmost state (S0) of Storage; this
contains all other states in the statechart, and each of these enclosing states is
also mapped to another action paragraph. In the following we present a semantic
mapping for protocols and capsules.

A protocol declaration in UML-RT encapsulates both the communication
elements (signals) and the allowed flow of these elements (statechart). In Circus,
this gives rise to two major elements: a process that captures this behaviour
and a channel to represent the communication elements. This single channel
communicates values of a free type, with each constructor representing a signal.

128 R. Ramos, A. Sampaio, and A. Mota

TP ::= i � T (I) 	| o | TL(incomings) | TL(outgoings)
channel chanP : TP

process P =̂ begin • H(SP) end

In names like chanP above, we assume that P is a placeholder for the actual
protocol name. The channel chanP communicates values of the free type TP; each
value represents a signal. Parameterless and parameterised signals are mapped
into constants and data constructors, like the signals o and i above. The type
of the parameter is translated into a corresponding Circus type by the function
T (). The remaining signals (incomings and outgoings) are mapped by the meta
function TL() that translates this remaining lists such as the elements that was
singled out. The main action is represented by H(SP), where SP stands for the
topmost composite state of P and the function H() translates a statechart into
a Circus action.

Capsules are also defined as processes, with methods and attributes defined as
Z operation and state schemas. Each port generates a channel with the same type
of the corresponding channel of the protocol, and has its behaviour described by
the process obtained from the mapping of its protocol synchronised with that
obtained from the capsule statechart. Observe that in UML-RT the type of a
port is the protocol itself. In Circus, the type of the channel originated from the
port is the free type that represents the protocol signals.

channel p : TP; TL(ports); TL(ports′)
process ChartC =̂ begin

state Cstate =̂ [a : T (A); TL(atts) | InvC]
m =̂ [ΔCstate ; x : T (X);

TL(params) | Prem ∧ Postm]
TL(meths)
• H(Sc)

end

In the above mapping, the process ChartC deals with the views represented
by class and state diagrams. It encapsulates all actions that manipulate the
private attributes of the capsule C. In the capsule C above, the compartments
correspond to attributes, methods and ports. Therefore, a, m and p are those
that we single out, and remaining lists in these compartments are mapped by the
function TL(). The attribute a is mapped to an attribute in the state of ChartC
with its corresponding type in Circus given by T (A). The method m() is mapped
to an operator that could change any state attribute and whose parameters are
mapped into schema attributes, just like a has been included in the state schema.
The invariant InvC, preconditions Prem and postconditions Postm come from the
UML-RT note element on the left, and it is assumed to be already described in
Circus. The port p is mapped to a channel with the same type TP of the channel
ChanP used by the protocol P. The main action of ChartC is expressed by H(SC),
which represents the mapping of the statechart of capsule C.

Transformation Laws for UML-RT 129

In Circus the semantics of the dynamic behaviour of a capsule C, includ-
ing its internal structure diagram, is captured by the parallelism of its internal
behaviour (ChartC), its connected sub-capsules and its ports. The dynamic be-
haviour considers restrictions imposed by its ports to the corresponding com-
munication channels and the interaction with its sub-capsules in a hierarchical
and compositional way. This is expressed in Circus by means of a parallel com-
position of these processes. Further details about our semantics for UML-RT is
presented in [6].

3 Transformation Laws

Based on the formal semantics briefly presented in the previous section, we pro-
pose some transformation laws for UML-RT. As with the formal semantics, we
concentrate on the elements that UML-RT adds to UML, and the relationships
of these with UML elements, especially classes. The laws deal with static and
dynamic model aspects represented by the three most important diagrams of
UML-RT: statechart, class and structure diagrams. The proof of the laws can
be found in [17, 6], using both semantics and the refinement laws of Circus [14].

Each law is defined by an equivalence relation on models (filled arrow) with a
subscript M that stands for the context in which the equality holds; the sound-
ness of this equivalence relation is based on the formal semantics: the models on
the two sides of each law are semantically equivalent, when mapped into Circus
specifications. Our laws do not modify the context M, but impose side condi-
tions on some of its views: ClsM represents the class diagrams of M, and StrM
denotes the architecture configuration of M, expressed by structure diagrams.
State diagrams of protocols and capsules are explicitly expressed in the law. Di-
agrams and notes describing properties (invariants, pre- and postconditions) are
presented only as the need arises. On each side of the law we use a dotted line
box to single out the relevant part of the model affected by the transformation.

The first law establishes when it is possible to introduce a new capsule into
the model.

Law 1. Declare Capsule

provided
(→) ClsM does not declare any element named A.
(←) No capsule in M has a relationship with capsule A in any diagram.

The left-hand side of Law 1 displays an empty box, meaning that the new
capsule can be included anywhere in the model, provided the side conditions are
satisfied; the subscript M fixes the context for the law application. We write (→)
before the proviso of a law to indicate that it is required only for applications of

130 R. Ramos, A. Sampaio, and A. Mota

this law from left to right. Similarly, we use (←) to indicate that it is only for
applying the law from right to left, and we use (↔) to indicate that the proviso
is necessary in both directions.

A proviso to remove a capsule A (application from right to left) is that no
other capsule extends, is associated to or connected with it. Since UML (and
UML-RT) does not allow two elements with the same name, then there is a
proviso stating that the name of the new element is fresh. We assume that atts,
meths and ports always represent the set of attributes, methods and ports of a
capsule. As the capsule is assumed not to be associated with any other in M, the
structure diagram or a statechart can have any form that obeys our provisos,
and their presentation is immaterial. We have similar laws to add or remove
other basic elements (for instance, protocols, ports and connections).

The next law captures a more elaborate transformation; it decomposes a
capsule A into parallel component capsules (B and C) in order to tackle design
complexity and to potentially improve reuse. The side condition requires that A
be partitioned, a concept that is explained next. Note that protocols X and Z
are not illustrated because any deterministic machines can be used.

Law 2. Capsule Decomposition

provided

(→) 〈batts, binv, bmeths, (b1, b2), Sb〉 and 〈catts, cinv, cmeths, (c1, c2), Sc〉 partition A.
(↔) The statecharts of the protocols X and Z are deterministic.

On the left-hand side of Law 2 the state machine of A is an And-State com-
posed of two states (Sb and Sc), which may interact (internal communication)
through the conjugated ports b2 and c1 (as captured by the structure diagram
on the left-hand side). The two other ports (b1 and c2) are used for external com-
munication by states Sb and Sc, respectively. Furthermore, in transitions on Sb,
only the attributes batts and the methods bmeths (that may reference only the
attributes batts) are used; analogously, transitions of Sc use only the attributes
catts and the methods cmeths (that may reference only the attributes catts).
Finally, the invariant of A is the conjunction binv ∧ cinv, where binv involves
only batts as free variables, and cinv only catts. When a capsule obeys such con-
ditions, we say that it is partitioned. In this case, there are two partitions: one is
〈batts, binv, bmeths, (b1, b2), Sb〉 and the other is 〈catts, cinv, cmeths, (c1, c2), Sc〉.

Transformation Laws for UML-RT 131

The effect of the decomposition is to create two new component capsules, B
and C, one for each partition, and redesign the original capsule A to act as a
mediator. In general, the new behaviour of A might depend on the particular
form of decomposition. Law 2 captures a parallel decomposition. On the right-
hand side of the law, A has no state machine. It completely delegates its original
behaviour to B and C through the structure diagram.

Concerning the structure diagram on the right-hand side of the law, it shows
how A encapsulates B and C. When A is created, it automatically creates the
instances of B and C, which execute concurrently. The public ports b1 and c2
are preserved in A. Capsule B has as its public port an image of b1, called b′1.
Although this port is public in B, it is only visible inside the structure diagram
of A. The role of this port is to allow B to receive the external signals received
from A through port b1, as captured by the connection between b′1 and b1 in
the structure diagram of A. Analogously, c2 and b′2 have the same relationship,
concerning capsules A and C. The internal ports b2 and c1 are moved to capsules
B and C, respectively, and play the same role as before.

Motivated by existing development practices, we propose a law that replaces
a capsule by a class, or vice-versa. This establishes an interesting connection
between passive and active classes.

Law 3. Replace a Class by a Capsule

provided
(→) All attributes within batts are private.
(↔) No capsule, except A, has a relationship with B.

Law 3 transforms a class B (left-side) into a capsule, also named B, on the
right-hand side. The behaviour of method calls is preserved by a statechart
that simulates a synchronised communication with the client protocol. Now, all
services (public methods) of the class are exposed in a new protocol XB. The
constructor of class B becomes an action in its statechart’s initial transition.

The following law promotes a hidden abstraction inside a capsule into an
independent passive class. This simple transformation seems recurrent during
several design steps. It is particularly helpful in the context where the system
is initially modelled as components, since it allows the extraction of relevant

132 R. Ramos, A. Sampaio, and A. Mota

classes from these components. Concerning side conditions, we need to consider
the effect on the state machine of the capsule, whose behaviour must be preserved
by the transformations. A simplified version of this law allows extracting a class
from another class.

Law 4. Extract Class

provided
(→) bmeths, binv, bpre and bpost refer only to methods and attributes within bmeths

and batts; B is a fresh identifier.
(←) No element, except A, refers to B; there is an equivalence relationship between

Sax and Sa, and also between ameths and ameths′.

On the left-hand side of law 4, capsule A is composed by the set of attributes
aatts and batts, of methods ameths and bmeths, and of ports ports. Its state
machine, represented by Sa, can access any of these elements. Its invariant is
represented by the conjunction ainv ∧ binv, and the pre- and postconditions of
its methods are captured by apre, bpre, apost and bpost. The elements inside
batts, bmeths, bpre and bpost are assumed not to refer to any other element of
A. These are the elements that will be extracted into a new class.

On the right-hand side, any action in Sax, methods within ameths′ or predi-
cates (ainv′, apre′ or apost′) of A, which on the left-hand side accessed attributes
of batts or methods of bmeths, will now access these elements via a qualifier b,
which represents an object of the new class B.

3.1 A Word on Completeness

One way of showing that a set of laws is comprehensive is to define a reduction
strategy based on the laws, whose target is a normal form described in terms of
a restricted subset of the language being discussed. This shows that the laws are
sufficiently powerful to reduce any program to this normal form, and moreover
any pair of equivalent programs to the same normal form. This is what we
briefly discuss here, for a normal form that extends a UML model with a single
capsule responsible for all the interactions with the environment; this capsule
also centralises the entire active behaviour of the modelled system. The reason
for keeping one active element as part of the normal form (rather than a pure
UML model containing only passive classes) is that the autonomous control flows
of the original capsules cannot be simply eliminated; the closest we can get is
combining them as a single statechart. Reducing an arbitrary UML-RT model

Transformation Laws for UML-RT 133

to such a form suggests that our laws are expressive enough to reason about the
new design elements that UML-RT adds to UML, which is our major concern.

As it is not possible to present all the equality laws used by our structural re-
duction strategy, we list some categories of laws below; the laws already presented
fall in these categories. We also refer to these categories in the development of
our case study.

– Laws of declaration: for introducing/removing capsules (Law 1), protocols,
ports, signals of a protocol, attributes, methods, and associations.

– Communication: for introducing new connections and intermediate capsules.
– Merging: combining/decomposing capsules (Law 2), protocols and ports.
– Delegation: transferring part of a protocol/capsule behaviour to another cap-

sule, protocol or class (for instance, Law 4).
– Structuring: Encapsulate (making it local) or replace a capsule with another

capsule or class (for instance Law 3)
– Statechart : Adding a new state, rewriting a transition action, partitioning

regions, among others.

Laws in these categories are used in the main steps of our reduction strategy, as
summarised below.

1. Merge capsule ports. Capsules should have a unique binary connection be-
tween them; this is justified by Laws of Merging.

2. Eliminate capsule hierarchy in structure diagrams. In this step, sub-capsules
are moved out the structure of its enclosing capsule; this is justified by Laws
of Structuring.

3. Move protocol behaviour to capsules. The entire system behaviour is ex-
pressed in its capsules; this is justified by the Laws of Delegation.

4. Capsule composition. Every two capsules that communicate should be en-
capsulated in a topmost capsule, and then composed; this is justified by Laws
of Merging.

5. Remove unreferenced model elements. All disconnected elements can be re-
moved from the model by the application of Laws of Declaration.

As a result of this strategy all the active elements are transformed into a
single capsule that centralises the entire autonomous behaviour of the model.
The (passive) classes are not affected by the strategy. This model might be
reduced even further, by eliminating the classes as well; Law 4 (in its reverse
order) is relevant here. However, for a complete elimination of classes, possibly
involving inheritance, additional laws would be necessary, as suggested in [18]
for a programming language; our focus here is on active rather than on passive
classes. Our complete set of laws and more details of the reduction strategy can
be found in [17].

Clearly, the objective of such a reduction strategy is merely to study the
expressiveness of a set of laws. In a development process, the laws are applied
in the reverse direction, supporting the evolution of simple and abstract models
into more elaborate design models, as illustrated in the next section.

134 R. Ramos, A. Sampaio, and A. Mota

4 Case Study

The transformation laws we have proposed may be useful to formalise informal
analysis and design guidelines widely adopted by development processes such
as, for instance, the Rational Unified Process (RUP) [11]. The analysis and
design disciplines of RUP include several activities that guide the developer to
systematically realise the use case view into the so-called logical view. Broadly,
abstractions are identified, an abstract (analysis) model is developed, and this
is progressively refined into a concrete design model.

The focus of our approach is to support a formal transition from analysis into
design. Complementary approaches, like [19], for example, address the rigorous
migration from the use case view to an initial abstract model (Figure 1) with
active objects in the logical view. We allow great flexibility concerning the start-
ing point for our development. An extreme could be a centralised model with
a single capsule, just like the normal form discussed in the previous section. In
the context of our case study, such a model would include a single capsule Main
with all the interactions described in the use case diagram in Figure 1.

The proposed laws can then be applied to evolve this monolithic model into a
concrete detailed model like the one in Figure 2. For example, Law 2 justifies the
decomposition of Main into ProdSys and Storage, and Law 4 justifies the extraction
of class Piece from Storage. The remainder of this section further refines this model
to a more concrete version, with more than one processor, working in a pipeline,
and a transportation agent (Holon) that intermediates the communication.

Fig. 3. Extracting PieceCollection and Decomposing the Processor

Transformation Laws for UML-RT 135

From the analysis model in Figure 2, we proceed to find a candidate architec-
ture. We adopt a simple layered architecture where data manipulation is isolated
from the business rules of the control elements. Therefore we use an explicit data
collection class PieceCollection to store the workpieces; this class is actually ex-
tracted from Storage using Law 4.

The candidate architecture is incrementally enhanced by means of the activ-
ity identify design elements. In particular, we decompose the processor ProdSys
into two other capsules (ProcessorA and ProcessorB), using Law 2 as well as
Laws of Statecharts, Communication and Delegation. With the introduction of
ProcessorA and ProcessorB, the statechart of ProdSys is split into the statecharts
of these new processors, and it is then represented by the interaction between
ProcessorA and ProcessorB. The remaining role of ProdSys is only to mediate
communication with these processors through its delay ports, and it is trans-
ferred to Main (Laws of Communication); then ProdSys becomes useless and can
be eliminated (Law 1). The resulting model is presented in Figure 3.

Transportation agents are needed not only to intermediate the communication
between physically separated processors, but also to relieve processors from con-
cerns of the global processing plan. To create one transportation agent (Holon),
we introduce intermediate capsule instances among the capsules that communi-
cate with the processor (using Laws of Communication); these capsules need to
be composed pairwise using a variation of Law 2 (Laws of Merging). As Holon

Fig. 4. Identifying Transportation Agents

136 R. Ramos, A. Sampaio, and A. Mota

was created by the composition of proxy capsules, it plays only a delegating role
at this moment. The resulting design is depicted in Figure 4.

The result of the entire development is a system with a structure very close
to the final architecture described in [20], but with a unique transport agent. A
further refinement could extend the design to include some new agents to form a
more complex automated transportation system, as well as refining the behaviour
and the structure of each agent to a more concrete version. An advantage of our
development strategy when contrasted to [20] is the justification of each design
decision using transformation laws; no algebraic law has been proposed in [20].

5 Conclusions and Related Works

We have proposed laws for UML-RT that capture both basic properties of indi-
vidual design elements as well as more elaborate transformations that correspond,
for instance, to refactorings [2, 21]. The presentation of the laws makes explicit the
transformation effects both on behavioural and on structural diagrams. Consid-
ering the elements that UML-RT adds to UML, our set of laws is comprehensive,
as discussed in Section 3.1, and can be regarded as an algebraic semantics of these
design elements. Another important issue is the connection between classes and
capsules, as captured by Law 3. We have also suggested a guide for the law ap-
plications based on the RUP analysis and design discipline, as illustrated through
the case study developed in Section 4. Soundness has been previously addressed
through mapping into Circus [6], which acts as a hidden formalism, useful to define
a sound interface for software engineering practice. The proof of the laws presented
here, as well as the complete set of laws, can be found in [17].

Regarding laws for UML models, there are several works [21, 8, 9] that con-
sider only transformations on structural or on behavioural diagrams in isolation.
They neglect possible interferences between static and dynamic aspects, unlike
our approach that takes into account these effects simultaneously. In [21], an
important relationship between code refactoring concepts and model transfor-
mations is presented. Other approaches [8, 22, 9] define a formal semantics for
UML using, respectively, Z, Alloy and Real-time Action Logic.

Regarding transformations for UML-RT, the work reported in [23] discusses
a stepwise development process using UML-RT, incorporating notions of refine-
ment, based on principles of behavioural interface refinement and incorporating
time. In [24] the locality principle is explored, formalising model evolution using
some local transformations; it also analyses the effects of these transformations
on various consistency properties. None of these works, however, makes side con-
ditions of laws explicit, presents a comprehensive set of laws for UML-RT, or
systematises a strategy for algebraic-based model transformations, as we have
done here. The work [10] also proposes an elaborated set of refactorings similar
to ours, but the semantics used does not allow usage of an algebraic strategy.

As future work we intend to investigate the formalisation of design and ar-
chitectural patterns based on our laws, and build tool support for automated
transformations related to component based development.

Transformation Laws for UML-RT 137

References

1. Kent, S.: Model driven engineering. In: Proc. of the IFM Conference. Volume 2335
of LNCS., Springer (2002) 286–298

2. Fowler, M.: Refactoring-Improving the Design of Existing Code. Addison Wesley
(1999)

3. Morgan, C.: Programming From Specifications. second edn. Prentice Hall (1994)
4. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User

Guide. Addison-Wesley (1999)
5. Selic, B., Rumbaugh, J.: Using UML For Modeling Complex RealTime Systems.

Rational Software Corporation (1998) available at http://www. rational.com.
6. Ramos, R., Sampaio, A., Mota, A.: A Semantics for UML-RT Active Classes

via Mapping into Circus. In: Proc. of the FMOODS Conference. Volume 3535 of
LNCS., Springer (2005) 99–114

7. Sampaio, A., Mota, A., Ramos, R.: Class and Capsule Refinement in UML For
Real Time. In: Proc. WMF’03. Volume 95 of ENTCS., Elsevier (2004) 23–51

8. Evans, A., France, R., Lano, K., Rumpe, B.: The UML as a Formal Modeling
Notation. In: Proc. of the UML Conference. LNCS, Springer (1999)

9. Lano, K., Bicarregui, J.: Semantics and Transformations For UML Models. In:
Proc. of the UML’99. Volume 1618 of LNCS., Springer (1999) 107–119

10. Meng, S., B.L., Naixiao, Z.: On refinement of software architectures. In: Proc. of
the ICTAC Conference. Volume 3722 of LNCS., Springer (2005) 482–497

11. Kruchten, P.: Rational Unified Process: An Introduction, The. 2 edn. Addison-
Wesley (2000)

12. OMG: UML 2.0 Superstructure Specification (2003) OMG Adopted Specification.
13. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 New Unclarities in the

Semantics of UML 2.0 State Machines. In: Proc. of the ICFEM Conference. Volume
3785 of LNCS., Springer (2005) 52–65

14. Sampaio, A., Woodcock, J., Cavalcanti, A.: Refinement in Circus. In: Proc. of the
FME Symposium. Volume 2391 of LNCS., Springer (2002) 451–470

15. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
16. OMG: Unified Modeling Language Specification, Version 1.4. Object Management

Group. (2001) Available at http://www.omg.org/uml.
17. Ramos, R.: Desenvolvimento Rigoroso com UML-RT. Master’s thesis, Federal

University of Pernambuco, Recife, Brazil (2005)
18. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for

Object-Oriented Programming. Science of Computer Programming 52 (2004)
19. Zhang, L., Xie, D., Zou, W.: Viewing Use Cases As Active Objects. ACM SIGSOFT

Software Engineering Notes 26 (2001) 44–48
20. Wehrheim, H.: Specification of an Automatic Manufacturing System: A Case Study

in Using Integrated Formal Methods. In: Proc. of the FASE Conference. Volume
1783 of LNCS., Springer (2000) 334–348

21. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.M.: Refactoring UML Models. In:
Proc. of the UML’01. Volume 2185 of LNCS., Springer (2001) 134–148

22. Gheyi, R., Borba, P.: Refactoring Alloy Specifications. In: Proc. WMF’03. Vol-
ume 95 of ENTCS., Elsevier (2004) 227–243

23. Sandner, R.: Developing Distributed Systems Step By Step With UML-RT. In:
Proc. of the VVVNS Workshop, Universität Münster (2000)

24. Engels, G., Heckel, R., Küster, J.M., Groenewegen, L.: Consistency-Preserving
Model Evolution Through Transformations. In: Proc. of the UML Conference.
Volume 2460 of LNCS., Springer (2002) 212–226

Underspecification, Inherent Nondeterminism
and Probability in Sequence Diagrams

Atle Refsdal1,2, Ragnhild Kobro Runde1, and Ketil Stølen1,2

1 Department of Informatics, University of Oslo, Norway
2 SINTEF ICT, Norway

Abstract. Nondeterminism in specifications may be used for at least two
different purposes. One is to express underspecification, which means that
the specifier for the same environment behavior allows several alterna-
tive behaviors of the specified component and leaves the choice between
these to those responsible for implementing the specification. In this case
a valid implementation will need to implement at least one, but not nec-
essarily all, alternatives. The other purpose is to express inherent nonde-
terminism, which means that a valid implementation needs to reflect all
alternatives. STAIRS is an approach to the compositional and incremental
development of sequence diagrams supporting underspecification as well
as inherent nondeterminism. Probabilistic STAIRS builds on STAIRS and
allows probabilities to be included in the specifications. Underspecifica-
tion with respect to probabilities is also allowed. This paper investigates
the use of underspecification, inherent nondeterminism and probability
in sequence diagrams, the relationships between these concepts, and how
these are expressed in STAIRS and probabilistic STAIRS.

1 Introduction

Nondeterminism in specifications may be used for expressing underspecification
as well as inherent nondeterminism. Underspecification means that the specifier
leaves some freedom of choice to those who will implement or further refine the
specification. This is useful when different design alternatives fulfill a function
equally well from the specifier’s point of view. For example, when specifying an
automatic teller machine we need to ensure that money is delivered and the
card is returned at the end of the transaction. But whether the card is returned
before or after the money is not important, and we may leave the choice to those
responsible for making the teller machine.

Inherent nondeterminism, on the other hand, means that all alternatives must
be reflected also in the final implementation. For example, when specifying a pro-
gram to simulate a coin flip it is essential that both heads and tails are possible
outcomes. An inherently nondeterministic choice can be seen as an abstraction
of a probabilistic choice where the probabilities are greater than 0 but otherwise
unknown.

The difference between underspecification and inherent nondeterminism is
related to refinement. In an implementation, which is not supposed to be refined
and has no underspecification, the distinction is not relevant.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 138–155, 2006.
c© IFIP International Federation for Information Processing 2006

Underspecification, Inherent Nondeterminism and Probability 139

STAIRS ([HHRS05b],[RHS05c]) is a method for the compositional devel-
opment of interactions, such as sequence diagrams and interaction overview
diagrams. STAIRS employs two different choice operators to distinguish be-
tween underspecification and inherent nondeterminism; alt represents under-
specification and xalt represents inherent nondeterminism. Probabilistic STAIRS
([RHS05a]) replaces xalt with the palt operator that also allows specification of
probabilities on its operands.

STAIRS includes all the main composition operators of UML 2.0 interactions,
such as seq and par for specifying sequential and parallel composition respec-
tively. As these operators are not important for the discussion in this paper, we
refer to [HHRS05b] for formal definitions and examples using these operators.

This paper summarizes insights gained during our work with formalization of
various forms of nondeterminism in STAIRS and probabilistic STAIRS by inves-
tigating the different roles of nondeterminism in interactions. In particular we

– demonstrate the usefulness of underspecification, inherent nondeterminism
and probability in specifications,

– show that these concepts are adequately expressed in STAIRS and proba-
bilistic STAIRS by the operators alt, xalt and palt,

– explore the properties of these operators, in particular with respect to re-
finement,

– provide simple examples that give a thorough understanding of the use of
these operators, both separately and combined.

The paper is organized as follows: Section 2 discusses underspecification and
its representation in a simplified version of STAIRS. In Section 3 we motivate
the need for inherent nondeterminism and show how this is incorporated in full
STAIRS. Section 4 introduces probabilistic STAIRS. We discuss related work in
Section 5 before concluding in Section 6.

2 Underspecification

2.1 Motivation

Often, it is useful to write specifications where certain aspects of the behavior
of the system are left open. This is known as underspecification. In many cases,
underspecification will be an implicit consequence of using abstraction when
describing the important features of a system. Many specification languages also
include some kind of ’or’ operator for explicitly specifying the alternatives the
implementer may choose between. In STAIRS, this is the alt operator.

In our setting of interactions, the alt operator may be used to describe sce-
narios that are different, but still seen as alternative means to achieve the same
purpose in some sense. The alt operator is also called potential choice, as the
alternatives represent choices that the implementation may choose between in
order to satisfy the specification. As an everyday example, consider the action
of making a u-turn when walking. This may be achieved by turning either
180 degrees left or 180 degrees right. Which alternative you choose is usually
insignificant.

140 A. Refsdal, R.K. Runde, and K. Stølen

2.2 Semantic Representation

In STAIRS the semantics of an interaction is defined by denotational trace se-
mantics, where a trace is a sequence of events representing a system run. We
denote the semantics of an interaction d by [[d]]. For the subset of STAIRS pre-
sented so far, containing only underspecification (and not inherent nondetermin-
ism) the semantics of an interaction is represented by an interaction obligation
(p,n). Here, p is a set of positive traces, representing desired or acceptable be-
havior, while n is a set of negative traces, representing undesired or unacceptable
behavior.

An interaction is a partial specification in the sense that it does not in general
define all the behavior of the system. Traces that are neither positive nor negative
are called inconclusive, meaning that these are traces that the specifier has not
yet considered. Letting H denote the universe of all traces, the traces H\ (p∪n)
are inconclusive in the obligation (p,n).

From an implementation point of view, there is no distinction between in-
conclusive and positive traces, as they all represent possible behaviors of the
system. However, conceptually there is an important difference between behav-
iors that are explicitly described and behaviors that are not. Also, positive and
inconclusive traces are treated differently by composition operators such as seq
(sequential composition) and par (parallel composition), see [HHRS05b].

Underspecification by means of alt corresponds to taking the pairwise union
of the positive and negative trace-sets of the operands. Formally:

[[d1 alt d2]] def= [[d1]] * [[d2]] (1)

where
(p1,n1) * (p2,n2)

def= (p1 ∪ p2,n1 ∪ n2) (2)

From this definition it is clear that the alt operator can be used not only
to introduce underspecification in the form of alternative ways of fulfilling a
task (i.e. new positive traces), but also to introduce more restrictions by adding
new negative traces. By taking the union also of the negative traces, the alt
operator can be used to merge alternatives that are considered to be similar,
both at the positive and the negative level. In addition, the above definition
ensures monotonicity of refinement with respect to alt, which will be clear from
the following sections.

2.3 Refinement

Refinement of a specification means to reduce underspecification by adding in-
formation so that the specification becomes closer to an implementation. As
in [HHRS05b], we distinguish between two special cases of refinement, called
narrowing and supplementing. Narrowing reduces the set of positive traces to
capture new design decisions or to match the problem more accurately. Sup-
plementing categorizes (to this point) inconclusive behavior as either positive

Underspecification, Inherent Nondeterminism and Probability 141

or negative. Formally, an interaction obligation (p′,n ′) is a refinement of an
interaction obligation (p,n), written (p,n) � (p′,n ′), iff

n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′ (3)

Intuitively, supplementing means that it is possible to add new positive or nega-
tive traces to those already specified. Specifying more alternative traces is usually
achieved by using the alt operator, meaning that we want d1 alt d2 to be a valid
refinement of d1 (and of d2). As negative traces must remain negative in a re-
finement, this means that d1 alt d2 must include the negative traces of both d1
and of d2, as in equation 2 above.

2.4 Simple Example

We now give a simple example of underspecification and refinement. Figure 1
specifies the game of tic-tac-toe between a player and the system. Either the
player or the system may make the first move, and this is specified using alt.
The player and the system then alternate making moves until the game is over.
The opt operator is a shorthand for an alt with an empty second operand, while
loop(2,3) may be interpreted as an alt between performing the contents of the
loop two and three times. For formal definitions of opt and loop, see [RHS05c].
The game is finished after minimum five and maximum eight moves, depending
on how many times the loop is executed, and whether the move inside opt is
performed or not. (A ninth move is never really necessary, as the result of the
game will be given at latest after the eight move.) We have omitted the details
describing the exact positions taken in each move.

player system

sd playerFirstsd TicTacToe

ref playerFirst

alt

ref systemFirst

X

O

loop(2,3)

X

O
opt

player system

sd systemFirst

O

X

loop(2,3)

O

X
opt

Fig. 1. Playing tic-tac-toe

In TicTacToe, the choice of who gets the first move is an example of under-
specification. A possible refinement could be to use narrowing in order to remove
this underspecification, as in TicTacToe2 where the player always moves first:

142 A. Refsdal, R.K. Runde, and K. Stølen

TicTacToe2 = (playerFirst) alt (refuse systemFirst)

where the operator refuse intuitively means that all traces defined by its argu-
ment should be considered negative. (For a formal definition of refuse, se Sec-
tion 3.2.) A further refinement could be to add behavior to the specification
by e.g. defining that traces where the system makes a second move before the
player gets to do his/her move, are negative. These behaviors were inconclusive
in TicTacToe2 (and TicTacToe), making this an example of supplementing.

2.5 Properties of alt and Refinement

As can be expected, the operator alt is

– associative: d1 alt (d2 alt d3) = (d1 alt d2) alt d3
– commutative: d1 alt d2 = d2 alt d1

This follows trivially from the associativity and commutativity of ∪.
As proved in [HHRS05a], we also have that the refinement operator � is

– reflexive: (p,n) � (p,n)
– transitive: (p,n) � (p′,n ′) ∧ (p′,n ′) � (p′′,n ′′) ⇒ (p,n) � (p′′,n ′′)
– monotonic with respect to alt:

[[d1]] � [[d ′
1]] ∧ [[d2]] � [[d ′

2]] ⇒ [[d1 alt d2]] � [[d ′
1 alt d ′

2]]

3 Inherent Nondeterminism

3.1 Motivation

Underspecification gives rise to nondeterminism, as the system behavior is not
completely determined by the specification. Still, nondeterminism in the sense
of underspecification does not require that the implementation itself should be
nondeterministic. Sometimes, however, it is desirable to specify nondeterminism
that must be present also in the implementation. We call this inherent nonde-
terminism. The throwing of a dice is an example of a process we would specify
as inherently nondeterministic. Another example is a password generator, that
should select passwords nondeterministically, at least from the perspective of the
user (and the attacker). Inherent nondeterminism is in fact also essential in the
domain of (information) security, see [Ros95].

As inherent nondeterminism and underspecification impose different require-
ments on an implementation, they should be described differently both in the
syntax and the semantics of interactions. In STAIRS, inherent nondeterminism
is specified by the use of the operator xalt. The xalt operator is also called manda-
tory choice, as the implementation must be able to perform (i.e. choose) any one
of the given alternatives.

3.2 Semantic Representation

In Section 2.2 we represented the semantics of a STAIRS specification with
underspecification as an interaction obligation (p,n). With this simple semantics,

Underspecification, Inherent Nondeterminism and Probability 143

it is not possible to express cases where all alternatives need to be present in an
implementation, as traces could be moved from positive to negative by means of
refinement. For STAIRS specifications with both underspecification and inherent
nondeterminism, we therefore extend the semantics to be a set of interaction
obligations. The interpretation is that for each interaction obligation (pi ,ni) a
valid implementation needs to be able to produce at least one trace allowed
by (pi ,ni). Intuitively, each interaction obligation (pi ,ni) defines an inherently
nondeterministic alternative that needs to be implemented, but exactly how this
should be achieved is underspecified, since H \ ni is a set. This leads us to the
following formal definition of xalt:

[[d1 xalt d2]] def= [[d1]] ∪ [[d2]] (4)

We now define the operator refuse, informally explained in Section 2.4, and gen-
eralize the definition of alt to cover operands with several interaction obligations:

[[refuse d]] def= {(∅, p ∪ n) | (p,n) ∈ [[d]]} (5)

[[d1 alt d2]] def= {(p1 ∪ p2,n1 ∪ n2) | (p1,n1) ∈ [[d1]] ∧ (p2,n2) ∈ [[d2]]} (6)

3.3 Refinement Revisited

The whole point of inherent nondeterminism in a specification is to ensure that
the alternatives are preserved during refinement. Since each interaction obliga-
tion represents an inherently nondeterministic alternative, we need to ensure
that each interaction obligation from the abstract specification will be repre-
sented also in the more concrete specification. Formally, a specification d ′ is a
refinement of a specification d , written d � d ′, iff

∀ o ∈ [[d]] : ∃ o′ ∈ [[d ′]] : o � o′ (7)

where o � o′ is refinement of interaction obligations as given by definition 3.

3.4 Simple Example

As an example, we consider a so-called ’randomizer’ that should provide non-
deterministic output selected randomly. Figure 2 gives a specification where the
randomizer simulates the flipping of a coin, where both heads and tails should
be possible outcomes.

Textually, we may write the Coin specification and its semantics as:

Coin = (heads alt (refuse tails)) xalt (tails alt (refuse heads))

[[Coin]] = { ({h}, {t}), ({t}, {h}) }

where h denotes the trace(s) where the outcome is heads and t denotes the
trace(s) where the outcome is tails. This semantics is illustrated in the bottom

144 A. Refsdal, R.K. Runde, and K. Stølen

receiver randomizer

sd Heads

heads

tails
refuse

alt

sd Coin

ref Tailsref Heads

xalt

receiver randomizer

sd Tails

tails

heads
refuse

alt

h
t

t
h

Fig. 2. The coin specification. Semantic representation to the bottom right.

right of Figure 2, where each circle represents an interaction obligation with the
positive traces in the upper half and the negative traces in the lower half.

As another example, we specify how throwing a dice may simulate the flipping
of a coin. One way of doing this is to let odd numbers represent heads, and even
numbers represent tails. This is expressed by the specification

DiceCoin = Throw135 xalt Throw246

where Throw135 specifies a throw resulting in an odd number and Throw246
specifies a throw resulting in an even number:

Throw135 = (1 alt 3 alt 5) alt (refuse (2 alt 4 alt 6))
Throw246 = (2 alt 4 alt 6) alt (refuse (1 alt 3 alt 5))

Using the given definitions of alt and xalt, we thereby get:

[[DiceCoin]] = { ({1, 3, 5}, {2, 4, 6}), ({2, 4, 6}, {1, 3, 5}) }

As should be expected, this semantics tells us that when using a dice to
simulate a coin, the dice should at least be able to produce one of the numbers
1, 3 and 5 (representing heads) and one of the numbers 2, 4 and 6. However,

Underspecification, Inherent Nondeterminism and Probability 145

it is not significant that all numbers may be produced, and DiceCoin may be
implemented by the unfair dice DiceCoin2 giving only the numbers 1 and 6:

[[DiceCoin2]] = { ({1}, {2, 3, 4, 5, 6}), ({6}, {1, 2, 3, 4, 5}) }

We see that DiceCoin2 is a valid refinement of DiceCoin, as each obligation of
DiceCoin is refined into an obligation of DiceCoin2 where some of the positive
behaviors have been redefined as negative (i.e. narrowed).

3.5 Relating xalt to alt

It is interesting to investigate what kinds of specifications we get by combin-
ing the operators for underspecification (i.e. alt) and inherent nondeterminism
(i.e. xalt). We have already seen examples of alt within xalt in DiceCoin and Dice-
Coin2 in the previous section. It remains to investigate the use of xalt within one
or both of the operands of alt.

A possible refinement of the Coin specification in Figure 2, is to strengthen the
specification by stating that the coin should never land on the side. As landing
on the side is negative both in the heads and the tails alternative, this behavior
may be added by using alt as the top-level operator as in Coin2:

Coin2 = Coin alt (refuse side)

[[Coin2]] = { ({h}, {t , s}), ({t}, {h, s}) }

where s denotes the trace(s) where the coin lands on the side. As the example
demonstrates, alt may in general be used to add (i.e. supplement) the same
positive and/or negative traces to all interaction obligations specified by xalt.

It remains to consider the case where we have xalt in both operands of alt.
Consider again the flipping of a coin as given in Figure 2. Another specification
where the randomizer simulates the rolling of a three-sided dice is given by:

Dice = (1 alt (refuse (2 alt 3))) xalt (2 alt (refuse (1 alt 3))) xalt

(3 alt (refuse (1 alt 2)))

In Figure 3 the specifications Coin and Dice are merged by the alt operator.
Observe that Coin/Dice is a refinement of both the Coin and the Dice specifica-
tions. Each interaction obligation defined by Coin has three refined obligations
in Coin/Dice (one would have been sufficient), as the earlier inconclusive traces
related to Dice have been supplemented as positive or negative. Similarly, each
of the three interaction obligations defined by Dice is refined by two interac-
tion obligations in Coin/Dice. In this sense we may say that the specification of
Coin/Dice represents both the Coin and the Dice specifications.

On the other hand, neither Coin nor Dice are valid refinements of Coin/Dice,
since the traces 1, 2, 3 are inconclusive in the interaction obligations of Coin and
the traces h and t are inconclusive in the interaction obligations of Dice. How-
ever, the specifications (Coin alt (refuse Dice)) and ((refuse Coin) alt Dice) are

146 A. Refsdal, R.K. Runde, and K. Stølen

sd Coin/Dice

ref Diceref Coin

alt

1,h
2,3,t

1,t
2,3,h

2,h
1,3,t

2,t
1,3,h

3,h
1,2,t

3,t
1,2,h

Fig. 3. The Coin and Dice specifications combined by alt. Semantic representation to
the right.

both valid refinements of Coin/Dice, since these specifications ensure that none
of the traces from the Coin/Dice specification are inconclusive. Intuitively, these
specifications mean that traces from the Dice (or Coin) alternative should not
be produced, which means that the opposite alternative is chosen. In general,
for any specifications d1 and d2 the set of valid refinements (and therefore im-
plementations) of d1 alt d2 will be both a subset of the valid refinements of d1
and a subset of the valid refinements of d2.

A valid refinement of the specification in Figure 3 would be to move the trace
h to the negative sets in all interaction obligations, without doing the same with
the trace t . The possible outcomes of a single run would then be 1, 2, 3 or t –
so we know that if a coin trace is produced, it will be t (assuming 1, 2, 3, h and
t are the only relevant traces).

The alt operator should be interpreted as underspecification w.r.t. traces and
not w.r.t. interaction obligations. As demonstrated by the examples in this sec-
tion it is not sufficient for an implementation to consider only one of the alt
operands. In general, the alt characterizes the intersection of its operands, mean-
ing that d1 alt d2 is a refinement of both d1 and d2. If we restrict refinement to
narrowing, using alt between two specifications with xalt may be interpreted as
’the implementation must include the inherent nondeterminism specified by at
least one of the alternatives’.

3.6 Properties of xalt and Refinement

As for alt, xalt is

– associative: d1 xalt (d2 xalt d3) = (d1 xalt d2) xalt d3
– commutative: d1 xalt d2 = d2 xalt d1

This follows trivially from the associativity and commutativity of ∪.
With respect to xalt, alt is

– right distributive: (d1 xalt d2) alt d3 = (d1 alt d3) xalt (d2 alt d3)
– left distributive: d1 alt (d2 xalt d3) = (d1 alt d2) xalt (d1 alt d3)

meaning that a specification with arbitrary nesting of alt and xalt may always
be rewritten as a specification with xalt as the top-level operator. This is proved
in [RRS06].

Underspecification, Inherent Nondeterminism and Probability 147

As in the simple case, we have that the refinement operator � is:

– reflexive: d � d
– transitive: d � d ′ ∧ d ′ � d ′′ ⇒ d � d ′′

– monotonic with respect to alt and xalt:
d1 � d ′

1 ∧ d2 � d ′
2 ⇒ d1 alt d2 � d ′

1 alt d ′
2 ∧ d1 xalt d2 � d ′

1 xalt d ′
2

These results are proved in [HHRS05a].

4 Probability

4.1 Motivation

Being able to specify probabilities add useful expressiveness to the specifications.
One typical example is in the specification of a coin or a dice, where the alter-
natives must occur with the same probability. Another example is a gambling
machine, where the winning alternatives should occur, but less often than the
losing ones.

Interactions are mainly used for specifying communication scenarios. Proba-
bilities are equally relevant in this setting, for instance to specify the probability
that a message will never be received when sent over an unreliable communica-
tion channel. Another example is when specifying soft real-time constraints such
as ’the user of the system will receive an answer within 10 seconds at least 90% of
the time’ (for more details, see [RHS05a]). As this example demonstrates, we are
not only interested in assigning exact probabilities to all alternatives specified
by an xalt, but also to specify a possible range for the probabilities, i.e. to allow
underspecification with respect to probabilities as well as behaviors. In STAIRS,
this is achieved by generalizing xalt to the palt operator.

4.2 Semantic Representation

Semantically, a probabilistic STAIRS specification is represented by a set of prob-
ability obligations (also called p-obligations). A p-obligation ((p,n),Q) consists
of an interaction obligation (p,n) and a set of probabilities Q . In any valid im-
plementation the p-obligation ((p,n),Q) should be selected with a probability
in Q . The fact that Q is a set and not a single probability allows us to represent
underspecification w.r.t. probabilities.

If a specification includes the p-obligation (({t1, t2},H \ {t1, t2}), {0.6}), this
does not necessarily mean that the probability of getting either t1 or t2 is 0.6; it
may be greater if there is another p-obligation ((p,n),Q) such that {t1, t2} � n.
On the other hand, if a specification contains a p-obligation ((p,n), {0.6}) such
that {t3, t4} ⊆ n, then we know that the probability of getting a trace in {t3, t4}
is at most 0.4.

The palt construct expresses probabilistic choice. Use of the palt operator is the
only way to assign probabilities different from 1. Before defining the semantics
of the palt, we introduce the notion of probability decoration, used to specify
the probabilities associated with the operands of a palt. It is defined by

148 A. Refsdal, R.K. Runde, and K. Stølen

[[d ;Q ′]] def= {(o,Q ∗Q ′) | (o,Q) ∈ [[d]]} (8)

where multiplication of probability sets is defined by

Q1 ∗Q2
def= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2} (9)

We also define the summation of n probability sets:

n∑
i=1

Qi
def= {min(

n∑
i=1

qi , 1) | ∀ i ≤ n : qi ∈ Qi} (10)

The palt operator describes the probabilistic choice between two or more
alternative operands whose joint probability should add up to one. Formally,
the palt is defined by

[[palt(d1;Q1, . . . , dn ;Qn)]] def= (11)

{(⊕
⋃
i∈N

{poi},
∑
i∈N

π2.poi) |

N ⊆ {1, . . . ,n} ∧N �= ∅ ∧ ∀ i ∈ N : poi ∈ [[di ;Qi]]} (a)

∪ {(⊕
n⋃

i=1

[[di ;Qi]], {1} ∩
n∑

i=1

Qi)} (b)

where π2.po returns the probability set of the p-obligation po and ⊕ is an oper-
ator for combining the interaction obligations of a set S of p-obligations into a
single interaction obligation, defined as

⊕S def= ((
⋃

((p,n),Q)∈S

p) ∩ (
⋂

((p,n),Q)∈S

p ∪ n),
⋂

((p,n),Q)∈S

n) (12)

We now explain definition 11 in detail. We first look at 11a. If we restricted
each N to be a singleton set then this part of the definition could be written
equivalently as

⋃n
i=1[[di ;Qi]]. This would correspond to the definition of xalt and

means simply that each probabilistic alternative should be reflected in a valid
implementation.

By including also the cases where N is any non-empty subset of {1, . . . ,n} we
are able to define the semantics as a set of p-obligations instead of as a multiset.
The operator ⊕ characterizes the traces allowed by all the p-obligations in its
argument set: A trace t is positive if it is positive according to at least one
p-obligation and not inconclusive according to any; t is negative only if it is
negative according to all p-obligations; traces that are inconclusive according
to at least one p-obligation remain inconclusive. So if a p-obligation ((p,n),Q)
occurs for example in two operands of the palt, then the resulting semantics will
contain a p-obligation ((p,n),Q + Q).

The single p-obligation in 11b requires the probabilities of the operands to
add up to one. If it is impossible to choose one probability from each Qi so that

Underspecification, Inherent Nondeterminism and Probability 149

the sum is 1, then the probability set will be empty and the specification is not
implementable.

We also redefine the refuse and alt operators to take probabilities into account.
Redefining positive traces as negative does not influence probabilities, so refuse
is defined simply by

[[refuse d]] def= {((∅, p ∪ n),Q) | ((p,n),Q) ∈ [[d]]} (13)

The alt construct captures underspecification with respect to traces. Two sets
of p-obligations are combined by taking the pairwise combination of p-obligations
from each set. As before, interaction obligations are combined by taking the
union of the positive traces and the union of the negative traces. In Section
3.5 we showed that the resulting interaction obligation is a refinement of both
the original ones, and therefore represents both of these interaction obligations.
Since the two p-obligations from the different operands are chosen independently
from each other, probabilities are multiplied. Formally:

[[d1 alt d2]] def= {(o1 * o2,Q1 ∗Q2) | (o1,Q1) ∈ [[d1]] ∧ (o2,Q2) ∈ [[d2]]} (14)

4.3 Refinement Revisited

A p-obligation is refined by either refining its interaction obligation, or by reduc-
ing its set of probabilities. Formally, a p-obligation ((p′,n ′),Q ′) is a refinement
of a p-obligation ((p,n),Q), written ((p,n),Q) � ((p′,n ′),Q ′), iff

(p,n) � (p′,n ′) ∧Q ′ ⊆ Q (15)

All abstract p-obligations must be represented by a p-obligation also at the
refined level, unless it has 0 as an acceptable probability, which means that it
does not need to be implemented. Formally, a specification d ′ is a refinement of
a specification d , written d � d ′, iff

∀ po ∈ [[d]] : (0 �∈ π2.po ⇒ ∃ po′ ∈ [[d ′]] : po � po′) (16)

We now explain further why also the cases where N is any non-singular subset
of {1, . . . ,n} is included in definition 11a. Firstly, we want to avoid a situation
where two p-obligations (o1,Q1) and (o2,Q2) coming from different operands of
a palt are represented only by a single p-obligation (o,Q) that is a refinement
of both (o1,Q1) and (o2,Q2) at the concrete level. We avoid this since also the
p-obligation (⊕{(o1,Q1), (o2,Q2)},Q1 + Q2) is included in the semantics and
hence needs to be represented at the concrete level.

Secondly, it should be possible to let a single p-obligation at the abstract level
be represented by a combination of p-obligations at the concrete level, as long
as each of these p-obligations are valid refinements of the original p-obligation
w.r.t. interaction obligations and their probability sets add up to a subset of the
original probability set. The inclusion of the combined p-obligations (resulting

150 A. Refsdal, R.K. Runde, and K. Stølen

from N sets with more than one element) in the palt semantics makes this
possible.

Our definition of refinement also explains why we have chosen to assign sets of
acceptable probabilities to the operands, and not simply lower bounds. Consider
the following specifications:

da = palt(d1;[15 . . . 1], d2;[15 . . . 1], d3;[15 . . . 1])
db = palt(d1;[15 . . .

1
2], d2;[15 . . .

1
2], d3;[15 . . .

1
2])

dc = palt(d1;{ 1
5}, d2;{ 1

5}, d3;{ 3
5})

Then dc is a refinement of da , but not of db . So by using only lower bounds we
would have less expressive power.

4.4 Simple Example

We now demonstrate a simple refinement in probabilistic STAIRS, building on
the DiceCoin/DiceCoin2 example from Section 3.4. Let pDiceCoin be a proba-
bilistic version of DiceCoin where the probabilities of odd and even numbers are
the same, represented syntactically and semantically by

pDiceCoin = palt(Throw135;{ 1
2},Throw246;{ 1

2})
[[pDiceCoin]] = { (({1, 3, 5}, {2, 4, 6}), { 1

2}), (({2, 4, 6}, {1, 3, 5}), {
1
2}),

(({1, 2, 3, 4, 5, 6},∅), {1}) }

The semantic representation tells us that the dice should be able to produce at
least one number in {1,3,5}, and the probability for this alternative should be 1

2 .
Similarly, the dice should be able to produce at least one number in {2,4,6}, with
probability 1

2 . Obviously, the probability of producing a number in {1,2,3,4,5,6}
should then be 1.

Suppose now that we require that the dice should be fair w.r.t. the odd num-
bers, give equal chances of odd and even number, and not produce any even num-
ber different from 6. We first let [[Throw1]] = { (({1}, {2, 3, 4, 5, 6}), {1}) } and
similarly for the other numbers. We then refine Throw135 by Throw135Fairly:

Throw135Fairly = palt(Throw1;{ 1
3},Throw3;{ 1

3},Throw5;{ 1
3})

[[Throw135Fairly]] = { (({1}, {2, 3, 4, 5, 6}), { 1
3}) ,

(({3}, {1, 2, 4, 5, 6}), { 1
3}) , (({5}, {1, 2, 3, 4, 6}), { 1

3}) ,

(({1, 3}, {2, 4, 5, 6}), { 2
3}) , (({1, 5}, {2, 3, 4, 6}), { 2

3}) ,

(({3, 5}, {1, 2, 4, 6}), { 2
3}) , (({1, 3, 5}, {2, 4, 6}), {1}) }

As Throw135 has the semantics {(({1, 3, 5}, {2, 4, 6}), {1})}, we see that this is
indeed a valid refinement, since the only p-obligation in [[Throw135]] is identical
to one of the p-obligations in [[Throw135Fairly]]. A dice that is fair w.r.t. the
odd numbers, has equal chances of odd and even numbers, and does not produce
any even number different from 6 can now be expressed by

Underspecification, Inherent Nondeterminism and Probability 151

pDiceCoin2 = palt(Throw135Fairly;{ 1
2},Throw6;{ 1

2})
[[pDiceCoin2]] = { (({1}, {2, 3, 4, 5, 6}), { 1

6}) ,

(({3}, {1, 2, 4, 5, 6}), { 1
6}) , (({5}, {1, 2, 3, 4, 6}), { 1

6}) ,

(({1, 3}, {2, 4, 5, 6}), { 1
3}) , (({1, 5}, {2, 3, 4, 6}), { 1

3}) ,

(({3, 5}, {1, 2, 4, 6}), { 1
3}) , (({1, 6}, {2, 3, 4, 5}), { 2

3}) ,

(({3, 6}, {1, 2, 4, 5}), { 2
3}) , (({5, 6}, {1, 2, 3, 4}), { 2

3}) ,

(({1, 3, 6}, {2, 4, 5}), { 5
6}) , (({1, 5, 6}, {2, 3, 4}), { 5

6}) ,

(({3, 5, 6}, {1, 2, 4}), { 5
6}) , (({1, 3, 5}, {2, 4, 6}), { 1

2}) ,

(({6}, {1, 2, 3, 4, 5}), { 1
2}) , (({1, 3, 5, 6}, {2, 4}), {1}) }

Each p-obligation in [[pDiceCoin]] has a refining p-obligation in [[pDiceCoin2]],
so pDiceCoin � pDiceCoin2 holds.

4.5 Relating palt to xalt and alt

In STAIRS, every xalt-operand represents an alternative that must be reflected
in the implementation. Its probability should be greater than 0, but is otherwise
unknown. In probabilistic STAIRS, a specification xalt(d1, . . . , dn) is therefore
interpreted as palt(d1;Q , . . . , dn ;Q) where Q = 〈0, . . . , 1].

We now discuss what it means to have probabilistic STAIRS specifications
that combine the use of the alt and palt operators. We hope the meaning of
underspecification within probabilistic alternative is intuitively clear, and do
not go further into this. Instead we show a probabilistic version of the previous
examples. pCoin specifies a coin, while pDice specifies a 3-sided dice:

pCoin = palt(Heads;{ 1
2},Tails;{ 1

2})
pDice = palt(One;{ 1

3},Two;{ 1
3},Three;{ 1

3})
[[pCoin]] = {(({h}, {t}), { 1

2}), (({t}, {h}), {
1
2}), (({h, t},∅), {1})}

[[pDice]] = {(({1}, {2, 3}), { 1
3}), (({2}, {1, 3}), {

1
3}), (({3}, {1, 2}), {

1
3}),

(({1, 2}, {3}), { 2
3}), (({1, 3}, {2}), {

2
3}), (({2, 3}, {1}), {

2
3}),

(({1, 2, 3},∅), {1})}

These examples use only a single probability in each probability set (there is no
underspecification w.r.t. probabilities). Figure 4 shows the semantics of

pCoin/Dice = pCoin alt pDice

We see that the interaction obligation of each p-obligation in pCoin/Dice
refines the interaction obligation of a p-obligation for both pCoin and pDice.
For example, the interaction obligation of the leftmost, uppermost p-obligation
in Figure 4 represent the first p-obligation of both [[pCoin]] and [[pDice]].
Since these represent two independent probabilistic choices it is reasonable to
multiply their probabilities. This also gives the nice result that if we consider

152 A. Refsdal, R.K. Runde, and K. Stølen

1,h

1/6

2,3,t
2,h

1/6

1,3,t
3,h

1/6

1,2,t
1,2,3,h

1/2

t

1,t

1/6

2,3,h
2,t

1/6

1,3,h
3,t

1/6

1,2,h
1,2,3,t

1/2

h

1,h,t

1/3

2,3
2,h,t

1/3

1,3
3,h,t

1/3

1,2
1,2,3,h,t

1

1,2,h

1/3

3,t
1,3,h

1/3

2,t
2,3,h

1/3

1,t

1,2,t

1/3

3,h
1,3,t

1/3

2,h
2,3,t

1/3

1,h

1,2,h,t

2/3

3
1,3,h,t

2/3

2
2,3,h,t

2/3

1

Fig. 4. The semantics of (pCoin alt pDice) in probabilistic STAIRS

only ’pure’ p-obligations (those we get from definition 11a in the cases where N
is a singleton set), then their probabilities add up to 1. In Figure 4 these ’pure’
p-obligations are enclosed by the dotted line.

4.6 Properties of alt, palt and Refinement

For alt, the revised definition 14 is still associative and commutative.
In contrast to xalt, palt is not associative. The order in which obligations are

combined according to 11b is significant, since this determines which probabil-
ities must add up to 1. Remember that the requirement that probabilities for
the operands add up to 1 applies to each occurrence of a palt operator, inde-
pendently of the nesting level. For similar reasons, alt is not distributive with
respect to palt. Consider the following specifications:

da = (palt(d1;Q1, d2;Q2)) alt (palt(d3;Q3, d4;Q4))
db = palt((palt(d1;Q1, d2;Q2) alt d3);Q3, (palt(d1;Q1, d2;Q2) alt d4);Q4)

In db we are free to choose different probabilities from the sets Q1 and Q2 in the
two operands of the outermost palt. In da there is no such freedom, so in this
respect da is more restrictive than db .

However, we do have commutativity of palt:

∀ i , j ∈ [1,n] : palt(. . . , di ;Qi , . . . , dj ;Qj , . . .) = palt(. . . , dj ;Qj , . . . , di ;Qi , . . .)

This follows trivially from the commutativity of ∪.
For probabilistic STAIRS, the refinement operator � is:

– reflexive, transitive, and monotonic with respect to alt
– restricted monotonic with respect to palt:

(∀ i ∈ [1 : n] : di � d ′
i ∧Q ′

i ⊆ Qi ∧ ⊕[[di]] � ⊕[[d ′
i]]) ⇒

palt(d1;Q1, . . . , dn ;Qn) � palt(d ′
1;Q

′
1, . . . , d

′
n ;Q ′

n)

Underspecification, Inherent Nondeterminism and Probability 153

This is proved in [RHS05b], which also motivates the last requirement in the
monotonicity for palt.

The interpretation given for xalt in probabilistic STAIRS is reasonable, as
xalt(d1, . . . , dn) and palt(d1;〈0 . . . 1], . . . dn ;〈0 . . . 1]) are refinements of each other
when abstracting away the probabilities. This is proved in [RRS06].

5 Related Work

Most specification languages do not distinguish between underspecification and
inherent nondeterminism the way it is done in STAIRS. The most well known
dialects of interactions are UML [OMG04] and MSC [ITU99]. Neither of these
have two different operators corresponding to alt and xalt. In practice, the alt
operator of UML is probably used by different groups to describe both inherent
nondeterminism and underspecification.

Live Sequence Charts [DH01] and [HM03] is a dialect of MSC where a (part)
of an interaction may be designated as either universal (mandatory) or existen-
tial (optional). Explicit criteria in the form of precharts decide when the chart
applies; whenever the communication behavior described by the prechart occurs,
behavior described by the chart must follow (in the case of universal locations)
or may follow (in the case of existential locations). Universal charts specify all
allowed traces. This is therefore not the same as inherently nondeterministic
alternatives in STAIRS, since the latter only specifies some of the traces that
must be present in an implementation.

CSP [Hoa85] defines two different operators for nondeterministic choice. Their
difference, however, is explained in terms of internal versus external choice. This
is not the same distinction as the one between underspecification and inherent
nondeterminism. As an example, let ? denote an input event, ! denote an out-
put event, and seq be the operator for sequential composition in the STAIRS
specification (?a seq (!b xalt !c)) alt ((?b seq !d)). Here, the environment may
choose between the two alt-operands, corresponding to external choice in CSP.
However, the choice between !b and !c should be inherently nondeterministic, a
requirement that may not be expressed using the CSP operators, while replacing
xalt with alt, would correspond to internal choice in CSP.

[SBDB97] extends the process algebraic language LOTOS [ISO89] with a
disjunction operator for specifying implementation freedom (i.e. underspecifi-
cation), leaving the LOTOS choice operator to be used for inherent nondeter-
minism. The disjunction operator is similar to our alt operator, and the choice
operator corresponds to xalt. An important difference between disjunction and
alt is that an implementation will have to select exactly one of the disjunction
operands, while it may include several of the traces specified by alt.

Probabilistic automata [Seg95] includes both nondeterminism and probabilistic
choice.Underspecification with respect to probabilities is representedby nondeter-
ministic choices between distributions. As for automata in general, specifications
are complete in the sense that there is no notion of inconclusive behavior.

In [MM99] a probabilistic extension of Dijkstra’s Guarded Command Lan-
guage GCL [Dij76] called pGCL is presented. The language includes both an

154 A. Refsdal, R.K. Runde, and K. Stølen

operator , for ’demonic’ choice and an operator p⊕ for probabilistic choice.
The following intuitive explanation is given for the meaning of the construct
this , that : ’The customer will be happy with either this or that ; and the imple-
menter may choose between them according to his own concerns.’ This indicates
that the role of the , operator in a pGCL specification is to express underspec-
ification, similar to the role of the alt operator in (probabilistic) STAIRS. By
specifying probabilistic choices the role of the p⊕ operator in pGCL corresponds
to the role of palt in probabilistic STAIRS. There is no notion of inconclusive
behavior in pGCL.

[Heh04] shows how probabilistic reasoning can be applied to predicative pro-
grams and specifications. Nondeterminism is disjunction, and equivalent to a
deterministic choice in which the determining expression is a variable of un-
known value (probability). Nondeterminism gives freedom to the implementer;
it can be refined by a deterministic or a probabilistic choice. Since the imple-
menter is not forced to produce both alternatives, the nondeterminism in [Heh04]
corresponds to underspecification in STAIRS. Cases where both alternatives
need to be possible are expressed by a probabilistic choice, as in probabilistic
STAIRS.

6 Conclusion

This article has shown the need for underspecification, inherent nondetermin-
ism and probability in specifications. We have demonstrated that these phe-
nomena are adequately expressed in STAIRS and probabilistic STAIRS by the
operators alt, xalt and palt. New insight has been gained into the interplay be-
tween these operators through studies of simple examples. The focus of this
paper has been on the theoretical understanding of how underspecification and
inherent nondeterminism is expressed in specifications and represented seman-
tically. The simplicity of the specifications has allowed us to properly explain
their semantic representations. For more examples related to communication see
[HHRS05b], [RHS05c] and [RHS05a]. We firmly believe that STAIRS and prob-
abilistic STAIRS offer a suitable expressiveness for practical specifications, and
intend to show this in the future through studies of real-life specifications.

The research on which this paper reports has been partly carried out within
the context of the IKT-2010 project SARDAS (15295/431) and the IKT SOS
project ENFORCE (164382/V30), both funded by the Research Council of Nor-
way. We thank Roberto Segala and the other members of the SARDAS project
for useful discussions related to this work. We also thank the anonymous review-
ers for constructive feedback.

References

[DH01] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

Underspecification, Inherent Nondeterminism and Probability 155

[Heh04] E. C. R. Hehner. Probabilistic predicative programming. In Dexter Kozen
and Carron Shankland, editors, Mathematics of Program Construction,
7th International Conference, number 3125 in Lecture Notes in Computer
Science, pages 169–185. Springer, 2004.

[HHRS05a] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. Why timed se-
quence diagrams require three-event semantics. Technical Report 309,
Department of Informatics, University of Oslo, 2005.

[HHRS05b] Ø. Haugen, K.E. Husa, R.K. Runde, and K. Stølen. STAIRS towards
formal design with sequence diagrams. Software and System Modeling,
4(4):349–458, 2005.

[HM03] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSC’s and the Play-Engine. Springer, 2003.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[ISO89] International Standards Organization. Information Processing Systems –

Open Systems Interconnection - Lotos – a Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour – ISO 8807,
1989.

[ITU99] International Telecommunication Union. Recommendation Z.120 — Mes-
sage Sequence Chart (MSC), 1999.

[MM99] C. Morgan and A. McIver. pGCL: Formal reasoning for random algo-
rithms. South African Computer Journal, 22:14–27, 1999.

[OMG04] Object Management Group. UML 2.0 Superstructure Specification,
ptc/04-10-02 edition, 2004.

[RHS05a] A. Refsdal, K. E. Husa, and K. Stølen. Specification and refinement of
soft real-time requirements using sequence diagrams. In P. Pettersson
and W. Yi, editors, Proc. Formal Modeling and Analysis of Timed Sys-
tems: Third International Conference, FORMATS, 2005, number 3829 in
Lecture Notes in Computer Science, pages 32–48. Springer, 2005.

[RHS05b] A. Refsdal, K. E. Husa, and K. Stølen. Specification and refinement of
soft real-time requirements using sequence diagrams. Technical Report
323, Department of Informatics, University of Oslo, 2005.

[RHS05c] R.K. Runde, Ø. Haugen, and K. Stølen. Refining UML interactions with
underspecification and nondeterminism. Nordic Journal of Computing,
12(2):157–188, 2005.

[Ros95] A. W. Roscoe. CSP and determinism in security modelling. In Proc. IEEE
Symposium on Security and Privacy, pages 114–127. IEEE Press, 1995.

[RRS06] A. Refsdal, R. K. Runde, and K. Stølen. Underspecification, inherent
nondeterminism and probability in sequence diagrams. Technical Report
335, Department of Informatics, University of Oslo, 2006.

[SBDB97] M.W.A. Steen, H. Bowman, J. Derrick, and E.A. Boiten. Disjunction
of LOTOS specifications. In T. Mizuno, N. Shiratori, T. Higashino, and
A. Togashi, editors, Formal Description Techniques and Protocol Speci-
fication, Testing and Verification: FORTE X / PSTV XVII ’97, pages
177–192. Chapman & Hall, 1997.

[Seg95] R. Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, Massachusetts Institute of Technology, 1995.

Generating Instance Models from Meta Models

Karsten Ehrig1, Jochen M. Küster2,
Gabriele Taentzer3, and Jessica Winkelmann3

1 Department of Computer Science, University of Leicester, UK
karsten@mcs.le.ac.uk

2 IBM Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
jku@zurich.ibm.com

3 Department of Computer Science, Technical University of Berlin, Germany
{gabi, danye}@cs.tu-berlin.de

Abstract. Meta modeling is a wide-spread technique to define visual
languages, with the UML being the most prominent one. Despite several
advantages of meta modeling such as ease of use, the meta modeling
approach has one disadvantage: It is not constructive i. e. it does not offer
a direct means of generating instances of the language. This disadvantage
poses a severe limitation for certain applications. For example, when
developing model transformations, it is desirable to have enough valid
instance models available for large-scale testing. Producing such a large
set by hand is tedious. In the related problem of compiler testing, a
string grammar together with a simple generation algorithm is typically
used to produce words of the language automatically. In this paper, we
introduce instance-generating graph grammars for creating instances of
meta models, thereby overcoming the main deficit of the meta modeling
approach for defining languages.

1 Introduction

With models expressed in the Unified Modeling Language (UML) [14] becoming
widely used in software engineering, also the meta modeling approach to define
the syntax of modeling languages has gained a wide acceptance: Commonly, a
meta model is designed which defines the abstract syntax of the language in a
declarative way. Instantiation of the meta model then yields a concrete model.

The meta modeling approach has several advantages, one of them being that
a visual meta model allows a quick grasp of the concepts being defined. Further,
the meta modeling approach is also beneficial when it comes to defining complex
modeling languages, consisting of several individual models. Nevertheless, there
exists also one disadvantage: Whereas constructing words of a language defined
by a string grammar can easily be done by applying grammar derivations, meta
model instantiation is hard to operationalize.

In common applications of the UML, this does not pose a problem because the
process of instantiation is performed by the software engineer when constructing
models. However, there are certain applications when an automatic approach is
needed: In compiler testing [4], the generation of a large amount of models from

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 156–170, 2006.
c© IFIP International Federation for Information Processing 2006

Generating Instance Models from Meta Models 157

a context-free grammar is common practice and a key issue in being able to test
compilers automatically. Whereas until now such a problem could be neglected
in model engineering based on the meta modeling approach, this situation dras-
tically changes with the idea of model driven architecture [13] and the more
widespread usage of model transformations. For testing model transformations,
a large set of automatically generated instance models must be available in or-
der to ensure the quality of the model transformation developed. Another area
requiring an operational description of a language defined by a meta model is
automatic editor generation for domain specific languages.

Graph grammars [5] provide a constructive, well-studied approach to language
definition with a formal foundation that allows to prove important properties.
However, the relationship between meta models and graph grammars has not
been studied in depth so far, but started in [3]. Deriving an instance-generating
graph grammar from an existing meta model is complicated. Here, one has to
ensure that every model that is created by a derivation of the graph grammar
is a valid instance of the meta model and further it is desirable that for every
instance of the meta model there exists a derivation in the graph grammar.
This completeness of the instance-generating graph grammar is important for
model transformation testing because it allows a complete coverage of all possible
inputs. For editor generation, it ensures that the language defined by the meta
model is indeed the one supported by the editor.

In this paper, we present our approach for automatic derivation of instance-
generating graph grammars from meta models. We first introduce meta models in
Section 2 and graph transformation in Section 3. In Section 4, we explain how an
instance-generating graph grammar can be derived for a meta model containing
all main features. OCL constraints are not yet considered during the generation
process, but have to be checked afterwards. Section 5 contains the proof that the
derived graph grammar generates exactly those instances induced by the given
meta model. As a consequence, the concept of the instance-generating graph
grammar allows to formally show the completeness of the generated instances.
We conclude by a discussion of related and future work.

2 Metamodels with OCL-Constraints

Visual languages such as the UML [14] are commonly defined using a meta
modeling approach. In this approach, a visual language is defined using a meta
model to describe the abstract syntax of the language. A meta model can be
considered as a class diagram on the metalevel, i. e. it contains meta classes,
meta associations and cardinality constraints. Further features include special
kinds of associations such as aggregation, composition and inheritance as well
as abstract meta classes which cannot be instantiated.

The instance of the meta model must conform to the cardinality constraints.
In addition, instances of meta models may be further restricted by the use of
additional constraints specified in the Object Constraint Language (OCL) [15].

158 K. Ehrig et al.

Fig. 1. Meta Model for statecharts

Figure 1 shows a slightly simpli-
fied statechart meta model (based
on [14]) which will be used as run-
ning example. A state machine has
one top CompositeState. A Composite-
State contains a set of StateVertices
where such a StateVertex can be either
an InitialState or a State. Note that
StateVertex and State are modeled
as abstract classes. A State can be
a SimpleState, a CompositeState or
a FinalState. A Transition connects a
source and a target state. Further-
more, an Event and an Action may
be associated to a transition. Aggre-
gations and compositions have been simplified to an association in our approach
but they could be treated separately as well. For clarity, we hide association
names, but show only role names in Figure 1. The association names between
classes StateVertex and Transition are called source and target as corresponding
role names. The names of all other associations are equal to their corresponding
role names. Since we want to concentrate on the main concepts of meta models
here, we do not consider attributes in our example. Having an instance at hand,
it is straight forward to generate attribute values in a post processing step.

The set of instances of the meta model can be restricted by additional OCL
constraints. For the simplified statecharts example at least the following OCL
constraints are needed:

1. A final state cannot have any outgoing transitions: context FinalState inv:
self.outgoing->size()=0

2. A final state has at least one incoming transition: context FinalState inv:
self.incoming->size()>=1

3. An initial state cannot have any incoming transitions: context InitialState inv:
self.incoming->size()=0

4. Transitions outgoing InitialStates must always target a State: con-
text Transition inv: self.source.oclIsTypeOf(InitialState) implies self.target.
oclIsKindOf(State)

The complexity of generating instances of meta models crucially depends
on the language elements used within meta models. For simple meta models
without any constraints (not even multiplicity constraints) and inheritance, in-
stantiation is rather straightforward by creating instances of metaclasses and
associations. However, meta models as commonly used in language specification
documents such as [14] make heavily use of multiplicity and OCL constraints
as well as inheritance and abstract classes. For instantiation of such meta mod-
els, more sophisticated techniques are needed. In particular, there is a need
for a systematic derivation of instances of meta models. In the following, we

Generating Instance Models from Meta Models 159

will describe the concepts of graph transformation which will represent the for-
mal basis of our approach (inspired by the use of context-free grammars for
deriving textual languages).

3 Graph Transformation

In this section we present the formal theory of typed graph transformations with
inheritance (see [3]), which will be the basis for the formal background for In-
stance Generating Graph Grammars (IGGG) in Section 5.

In object-oriented modeling, graphs can be used at two levels: the type level
(a class diagram) and the instance level (an instance of the class diagram). This
typing concept has been described by typed graphs [5], where a fixed type graph
serves as abstract representation of the class diagram. As in object-oriented mod-
elling, types can be attributed and structured by an inheritance relation. Types
should be divided into abstract types which cannot have instances and con-
crete types. Instances of a type graph with inheritance (TGI) are object graphs
equipped with a structure-preserving mapping to the type graph. A class dia-
gram can thus be represented by a type graph with inheritance plus a set of
constraints over this type graph expressing multiplicities. For examples of the
following definitions we refer to Section 4.

Definition 1 (type graph with inheritance). A type graph with inher-
itance is a triple TGI = (TG , I, Abs) consisting of a type graph TG =
(TGV , TGE, srcTG, tgtTG) (with a set TGV of nodes, a set TGE of edges, source
and target functions srcTG, tgtTG : TGE → TGV), an acyclic inheritance rela-
tion I ⊆ TGV × TGV , and a set Abs ⊆ TGV , called abstract nodes. For each
x ∈ TGV , the inheritance clan is defined by clanI(x) = {y ∈ TGV | (y, x) ∈ I∗},
where I∗ is the reflexive-transitive closure of I.

A graph can be typed over the type graph with inheritance by a pair of func-
tions, from nodes to node types and from edges to edge types, respectively. This
pair of functions does not constitute a graph morphism, but will be called clan
morphism; it uniquely characterizes the type morphism into the flattened type
graph.

Definition 2 (clan morphism). Let TGI = (TG , I, Abs) with TG =
(TGV , TGE, srcTG, tgtTG) be a type graph with inheritance. A clan-morphism
ctp : G → TGI from a graph G = (GV , GE , srcG, tgtG) to TGI is a pair
ctp = (ctpV : GV → TGV , ctpE : GE → TGE) such that for all e ∈ GE the
following holds:
– ctpV ◦ srcG(e) ∈ clanI(srcTG ◦ ctpE(e)) and
– ctpV ◦ tgtG(e) ∈ clanI(tgtTG ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph.

The main ingredients of graph grammars are graph rules which will be defined
in Definition 4. Between clan-typed graphs we use type-refining morphisms (see

160 K. Ehrig et al.

also Def. 5 in [16]) where a node with type t can be mapped to a node with a type
in clan(t). In the following, we call a type-refining morphism just morphism. If
each node is mapped to a node with the same type, the corresponding morphism
is called type-preserving.

For controlling a rule application, simple negative application conditions
NAC(x) and atomic application conditions P (x,∧i∈Ixi)) are defined which are
needed in Section 4. Although NAC(x) is a special case of P (x,∧i∈Ixi)) with
I = ∅, we introduce both kinds of application conditions, due to more clear
definition of instance generating rules.

Definition 3 (application condition). A simple negative application con-
dition is of the form NAC(x), where x : L → X is an injective morphism.
A morphism m : L → G satisfies NAC(x) if there does not exist an injec-
tive morphism p : X → G with p ◦ x = m. An atomic application condition
is of the form P (x,∧i∈Ixi) where x : L → X and xi : X → Ci with i ∈ I
are injective morphisms. A morphism m : L→ G satisfies P (x,∧i∈Ixi) if for all
injective morphisms p : X → G with p ◦ x = m there does exist an i ∈ I and
an injective morphism qi : Ci → G with qi ◦ xi = p.

Definition 4 (rules). A rule typed over a type graph TGI = (TG , I, Abs) with
inheritance is given by p = (L l←K r→R,Ap), where L,K,R are clan-typed graphs,
l and r are type-preserving injective graph morphisms, ctp−1

R (Abs) ⊆ r(KV),
and Ap is a set of application conditions of the form NAC(x) or P (x,∧i∈Ixi)
as defined in Def. 3.

Definition 5 (rule matching and application). Given a rule p as in Def. 4
and a clan-typed graph (G, ctpG), then m is a match of p in G if

– m is an injective match of the rule p = (L l←K r→R,Ap) as defined in Def.
4 in the graph G;

– tK(x1) = tK(x2) for tK = ctpG ◦m ◦ l and x1, x2 ∈ KV with r(x1) = r(x2);
– m satisfies all simple negative application conditions and all atomic applica-

tions in Ap.

Given a match m, a direct derivation (G, ctpG)
p,m
=⇒ (H, ctpH) exists if there is

a span of graph morphisms G←D→H and a co-match m∗ : R→H of p in H
that give rise to a derivation in the double-pushout approach of untyped graph
transformation as defined in [5] where pushouts are used to model the gluing of
graphs.

Given a rule set R, (G, ctpG) ∗⇒R (H, ctpH) is a finite sequence of an arbitrary
number of direct derivations by rules of R. A derivation (G, ctpG) ∗⇒R (H, ctpH)
terminates, if � ∃r ∈ R : (H, ctpH)⇒r (H ′, ctpH′).

4 Generating Instances by Graph Grammars

In this section, we introduce the idea of an instance-generating graph grammar
that allows one to derive instances of an arbitrary meta model in a systematic
way. The corresponding graph grammar requires (1) a start graph that will be the

Generating Instance Models from Meta Models 161

empty graph, (2) a type graph that is obtained by converting the meta model class
diagram to a type graph and (3) graph grammar rules which are described below.

We use the concept of layered graph grammars [6] to order rule applications.
Layer 1 rules create instances of each class. To generate all possible instances we
have to allow an arbitrary number of applications of these rules, meaning that
Layer 1 does not terminate and has to be interrupted by user interaction or after
a random time period. Layer 2 rules deal with generating links corresponding
to associations with at least one 1 -multiplicity. Those rules have to be applied
as long as possible to ensure the multiplicity constraints, requiring that rule
application in this layer has to terminate. Layer 3 creates links corresponding
to associations with 0..n-multiplicities. The rules in this layer can be applied
arbitrarily often because these links are optional.

We use abstract node types (corresponding to abstract classes) leading to
the concept of abstract rules. An abstract rule contains at least one node of
abstract type. For each concrete subtype of the abstract type this induces a
corresponding rule.

Given a concrete meta model, assembling the rules derived, the type graph
created and the empty start graph leads to an instance-generating graph gram-
mar for this meta model. The rules of the instance-generating graph grammar
are determined by the occurrence of specific meta model patterns: The idea is to
associate to a specific meta model pattern a graph grammar rule that creates an
instance of the meta model pattern under certain conditions. In the following,
we describe the rules that we derive for common meta model patterns.

Instance-generating rules: Layer 1 of any instance-generating graph grammar
(see pattern p0 in Figure 2) contains rules of the form createE’ where E’ is
replaced by the name of any non-abstract class. The meta model pattern for
this rule is simply a class. For a concrete meta model, we will get such a create
rule for each non-abstract class within the meta model, allowing us to create an
arbitrary number of instances of all non-abstract classes.

We have three meta model patterns for the rules in Layer 2 (corresponding
to the three possible multiplicity constraints) (see Fig. 3 and 4). The first rule
for each pattern creates a link between existing instances. The NACs ensure,
that the created link does not violate the multiplicity constraints (e.g. the two
instances are not already connected by such a link, or the instance of A is not
already connected to an instance of E).

To ensure the to one multiplicity on the specified association ends in-
sertE’ a ANewObj resp. insertE’ a ANewObj2 creates a new instance of any con-
crete E’ ∈ clan(E) resp. A’ ∈ clan(A) if no application condition holds. In case
of a 1 to * relation (see pattern p1) a new instance of E’ ∈ clan(E) is created if
no concrete instance of E is present, which is ensured by NAC1. In case of a 1
to 0..1 or 1 to 1 relation (see pattern p2 and p3) the rule can only be applied if
any match of an instance of E is already connected to an instance of A, which
is ensured by the application condition. NAC2 of the rules insertE’ a ANewObj
resp. insertE’ a ANewObj2 requires that the instance of A is not connected to an
instance of E yet.

162 K. Ehrig et al.

Fig. 2. Rules for graph grammar derivation: Layer 1

A

E

2:A

1:E1:E

*

Meta Model Pattern Grammar Rule Application Conditions

1

p1

Layer

2

2:A 2:A

:E

2:A

1:E

NAC1 NAC2

insertE_a_A

1:A

:E’

1:A

:E

a

NAC1
insertE'_a_ANewObj

a
a a

a

A

E

2:A

1:E1:E

0..1

1

p22

2:A

insertE_a_A

2:A

:E’

2:A

insertE'_a_ANewObj

a
a

a

2:A

:E

:A

1:E

NAC1 NAC2

2:A

1:E

a a a

NAC3

1:E

Cond

:A

1:E

a

1:A

:E

a

NAC2

2:A

:E

a

NAC2

Fig. 3. Rules for graph grammar derivation: Layer 2

We also have three meta model patterns for the rules of Layer 3 (correspond-
ing to the three possible multiplicity constraints) (see Fig. 5). The rules for these
patterns create links between existing instances. The NACs ensure, that the cre-
ated link does not violate the upper multiplicity constraints as in the first rules
of the corresponding pattern in Layer 2. The graph grammar derivation rules in
layer 3 can be applied arbitrarily often, they are terminating as described above.

Generating Statechart Instances: We now discuss an instance-generating graph
grammar for the meta model of statecharts (see Figure 1). Due to space limita-
tion we do not show the details of all rules. The example rules shown in Figure
6 - 8 construct a simple instance graph consisting of a state machine with its
top CompositeState containing three state vertices and two transitions between
them. In the application conditions shown in Figures 6 - 8 the node types are
abbreviated (CS for CompositeState etc.).

First, we get Layer 1 rules for all concrete classes occurring in the class diagram.
These are createStateMachine, createCompositeState, createSimpleState, createFi-
nalState, createInitialState, createTransition, createEvent, and createAction.

Generating Instance Models from Meta Models 163

A

E

2:A

1:E1:E

1

Meta Model Pattern Grammar Rule Application Conditions

1

p3

Layer

2

2:A 2:A

:E

:A

1:E

NAC1 NAC2

insertE_a_A

2:A

:E’

2:A

insertE'_a_ANewObj

2:A

1:E

a a a

NAC3

a a

a

:A’

1:E1:E

insertE_a_A'NewObj2

a

1:E

Cond

:A

1:E

a

2:A

:E

a

NAC2

2:A

Cond

2:A

:E

a

:A

1:E

a

NAC2

Fig. 4. Rules for graph grammar derivation: Layer 2

Meta Model Pattern Grammar Rule Application ConditionsLayer

A

E

2:A

1:E1:E

0..1

0..1

p43

2:A

insertE_a_A

A

E

2:A

1:E1:E

*

0..1

p53

2:A 2:A

:E

2:A

1:E

NAC1 NAC2

insertE_a_A

2:A

:E

:A

1:E

NAC1 NAC2

2:A

1:E

a a a

a a

NAC3

a a

a a

A

E

*

*

p63

2:A

1:E1:E

2:A
2:A

1:E

a

NAC

insertE_a_A

a a

Arbitrarily often

Arbitrarily often

Arbitrarily often

Fig. 5. Rules for graph grammar derivation: Layer 3

For association source between StateVertex and Transition (corresponding to
an instance of pattern p1), we derive four rules: one rule creates a link source
between an existing StateVertex and an existing Transition. Further, for each con-
crete class that inherits from class StateVertex one rule is derived that creates
the StateVertex, an InitialState, a CompositeState, SimpleState or a FinalState,
and the link source. Note that the abstract class StateVertex could be matched

164 K. Ehrig et al.

Grammar Rule Example GraphLayer

:StateMachine

createCompositeState1
:StateMachine

Application Conditions

createCompositeState, createInitialState,

createSimpleState, createTransition,

createFinalState, createEvent, createAction

:SimpleState

:InitialState

:StateMachine

:Transition

:Transition

1

:Event

:Action

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

2:T

:SV

2:T

1:SV

source source

NAC1 NAC21:StateVertex

source

2:Transition2:Transition

1:StateVertex

InsertStateVertex_source_Transition

source source

2

InsertInitialState_source_TransitionNewObj,

InsertCompositeState_source_TransitionNewObj,

InsertFinalState_source_TransitionNewObj,

InsertSimpleState_source_TransitionNewObj

:Event :Action

:FinalState

:FinalState

Fig. 6. Example Grammar Rules 1

to any of its concrete subclasses InitialState, CompositeState, FinalState, and Sim-
pleState. For association target between StateVertex and Transition, similar rules
are derived.

For association top between StateMachine and CompositeState, an instance of
pattern p2, we derive the corresponding two rules. One of them is shown in Figure
6, creating a CompositeState to a StateMachine if each other CompositeState is
bound and the StateMachine is not already connected to a top CompositeState.

We further get instances of pattern p4 (association between Transition and
Action) and p5 (association between Transition and Event as well as association
between CompositeState and StateVertex).

Extensions: So far, we considered a generation of meta model instances that is
somewhat simplified: First of all, we have not explicitly dealt with generating at-
tribute values. There are (at least) two possible solutions for this: One possibility
is to perform a postprocessing step which generates arbitrary attribute values. A
set of predefined values is specified for each attribute, to be used within attribute
assignment. Another approach would be to explicitly include attributes in the
graph grammar rules and assign attributes already while deriving the instance
of the meta model. Also properties of associations like navigation directions, role
names, etc. can be included in certain attributes.

Then, associations being loops as well as associations with arbitrary cardinality
constraints (i. e. m..n) can be achieved by extending the rule set of the instance
generating graph grammar. Moreover if the meta model contains singleton classes,
the create rule for the corresponding class has to have an additional application
condition that ensures that at most one instance of this class is created.

Generating Instance Models from Meta Models 165

Grammar Rule Example GraphLayer Application Conditions

1:FinalState

target

2:Transition2:Transition

2
InsertFinalState_target_Transition

:SimpleState

:InitialState

:StateMachine

:Transition :Transition

source sourcetarget

:FinalState

target

InsertInitialState_target_TransitionNewObj,

InsertCompositeState_target_TransitionNewObj,

InsertSimpleState_target_TransitionNewObj,

InsertStateVertex_target_Transition

:Event :Action

1:FinalState

2:T

:SV

2:T

1:SV

NAC1 NAC2

target target

:CompositeState

top

1:StateMachine1:StateMachine

2

InsertCompositeState_top_StateMachineNewObj

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition :Transition

top

source sourcetarget

:FinalState

target

:Event :Action

2:CS

Cond1

:SM

2:CS

top

1:SM

:CS

NAC2

top

InsertCompositeState_top_StateMachine

Fig. 7. Example Grammar Rules 2

Example Grammar Rule Example GraphLayer Application Conditions

:SimpleState

:InitialState

:CompositeState

:StateMachine

:Transition

:Transition

top

source sourcetarget

:FinalState

target

subVertexsubVertex
subVertex

3 InsertTransition_effect_Action

3 InsertTransition_trigger_Event

:Event :Action

1:Transition

effect

2:Action2:Action

1: Transition

trigger effect

1:T

effect

:A

NAC1 NAC2 NAC3

:T

2:A

1:T

2:A

effect effect

2:SV

:CS

2:SV

1:CS

NAC1 NAC21:CompositeState

subVertex

2:StateVertex2:StateVertex

1:CompositeState

InsertCompositeState_subVertex_StateVertex3

subVertex
subVertex

Fig. 8. Example Grammar Rules 3

Ensuring OCL constraints can be done by a constraint checker, once the overall
derivation of an instance model has terminated. The instance generation and the
translation of simple OCL constraints are described in [7, 8] in more detail.

5 Formal Background for Instance Generating Graph
Grammars

In this section we present the formal background for Instance Generating Graph
Grammars (IGGG) based on the formal theory of typed graph transformations

166 K. Ehrig et al.

with inheritance (see [3]). As the main result of this paper, we present the equiv-
alence of instance sets generated by an instance-generating graph grammar on
the one hand, and induced by a type graph with multiplicities on the other hand.

Definition 6 (multiplicities). A multiplicity is a pair [i, j] ∈ N × (N ∪ {∗})
with i ≤ j or j = ∗. The set of multiplicities is denoted Mult. The special value
∗ indicates that the maximum number of nodes or edges is not constrained. For
an arbitrary finite set X and [i, j] ∈ Mult, we write |X | ∈ [i, j] if i ≤ |X | and
either j = ∗ or |X | ≤ j.

Now we define an induced graph language over a type graph with multiplicities
TGImult. As usual, we use multiplicities to decorate the edges of type graphs.
The multiplicities express the number of incoming, respectively outgoing edges
for each target, respectively source instance.

Definition 7 (Type graph with multiplicities). A type graph with mul-
tiplicities (see [16]) is a tuple TGmult = (TGI ,msrc,mtgt) consisting of a type
graph with inheritance TGI and additional functions msrc,mtgt : TGI E → Mult,
called edge multiplicity functions.

Considering the meta model in Figure 1, it can be formalized to a type graph
with multiplicities in a straight forward way. The node types are given by classes,
the edge types by associations. In contrast to the associations, edge types have
to be always directed. For each edge type a direction can be arbitrarily chosen.

Definition 8 (TGImult-induced graph language). Given a type graph
TGImult with multiplicities as defined in Def. 7, the induced graph language
is defined by:
L(TGImult) = {(G = (GV , GE , srcG, tgtG), ctpG : G → TGI) | ∀e ∈ TGIE ∧
∀v ∈ ctp−1

G (t) with t ∈ clan(src(e)) : |ctp−1
G (e) ∩ src−1(v)| ∈ mtgt(e)

and
∀e ∈ TGIE ∧ ∀v ∈ ctp−1

G (t) with t ∈ clan(tgt(e)) : |ctp−1
G (e) ∩ tgt−1(v)| ∈

msrc(e)}, where ctpG is a clan morphism.

Example 1. Considering e.g. the example graph in Fig. 8, the multiplicities for
edge type subvertex are fulfilled: For the only composite state c |ctp−1(subvertex)∩
src−1(c)| = 3 ∈ [0, ∗] and for all state vertices s |ctp−1(subvertex) ∩ tgt−1(s)| ≤
1 ∈ [0, 1]. The composite state is not subvertex of any vertex and all other state
vertices are subvertex of the composite state.

Having formalized a meta model given by a class diagram through a type graph
with multiplicities, we are now ready to define the language of an instance-
generating graph grammar. Based on a given type graph with multiplicities, we
mainly formalize the set of rules needed for instance generation. The rules are
already given in Sec. 4. Please note that rules insertE a A and insertE’ a ANewObj
differ dependently on the source and target multiplicities of the corresponding
patterns.

Since all given rules are intended to be matched injectively, they do not cap-
ture the case of patterns with loops as edge types, which would be translated to
loops in the type graph. That’s why loops are excluded in the following.

Generating Instance Models from Meta Models 167

Definition 9 (instance-generating graph grammar and language).
Given a type graph TGImult with multiplicities as in Def. 7 without loops, an
instance generating graph grammar is denoted by IGGG = (TGI, ∅, R), where
R is the union of the following sets of rules. The rules are depicted in Figures 2
- 5 and are formalized in the obvious way according to Def. 4.

– R1 = {createE’ | ∀E′ ∈ TGIN ∧ E′ �∈ Abs} with rules createE’ as in Fig. 2
– R2 = R21 ∪R22 ∪R23 with

R21 = {insertE a A | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1])}
R22 = {insertE’ a ANewObj | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∧ E′ ∈ clan(E) ∧ E′ �∈ Abs}
R23 = {insertE a A’NewObj2 | ∀A,E ∈ TGIN , a ∈ TGIE : with
(msrc(a) = [1, 1] ∨mtgt(a) = [1, 1]) ∨A′ ∈ clan(A) ∧A′ �∈ Abs}
with rules insertE a A, insertE’ a ANewObj, and insertE’ a ANewObj2 as in
Fig. 3 - 4

– R3 = {insertE a A | ∀A,E ∈ TGIN , a ∈ TGIE with msrc(a) �= [1, 1] ∧
mtgt(a) �= [1, 1]} with rules insertE a A as in Fig. 5

R is layered, i.e. there is a function rl : R→ N with rl(r) = i for all r ∈ Ri for
i = {1, 2, 3}. Function rl is called rule layer function.
The generated graph language is defined by the following set of concrete typed
graphs: L(IGGG) = {(G, ctpG) | ∅ ∗⇒R1 (H, ctpH) ∗⇒R2 (K, ctpK) ∗⇒R3

(G, ctpG) ∧ � ∃r ∈ R2 : (K, ctpK)⇒r (K ′, ctpK′)}.

The following lemma states that the rule application of rules in R2 to any graph
created by rules of R1 always terminates. This property is needed in the following
theorem.

Lemma 1 (termination of rule layer 2). Given an instance generating graph
grammar IGGG(TGI, ∅, R) where TGI does not contain any loop as edge type,
let L1(IGGG) = {(H, ctpH) | ∅ ∗⇒R1 (H, ctpH)}. All derivation sequences
(H, ctpH) ∗⇒R2 (G, ctpG) with (H, ctpH) ∈ L1(IGGG) terminate.

Proof. See [7].

As one main result the following theorem states that the instance sets generated
by an IGGG and those induced by a type graph with multiplicities are equal.

Theorem 1 (equality of languages). Given a type graph TGImult with mul-
tiplicities and without loops and an instance generating graph grammar IGGG =
(TGI, ∅, R) for TGImult, we have L(IGGG) = L(TGImult).

Proofidea. We have to proof that
(1) (G, ctpG) ∈ L(TGImult) holds for any derivation ∅ ∗⇒R1 (H, ctpH) ∗⇒R2

(K, ctpK) ∗⇒R3 (G, ctpG). This is true, since Layer 1 creates nodes of valid types
only, the NACs prohibit the exceeding of the upper bound, and the rules in Layer
2 are applied until the lower bounds are fulfilled.

168 K. Ehrig et al.

(2) For a given graph (G, ctpG) ∈ L(TGImult) there exists a derivation sequence
∅ ∗⇒ (G, ctpG) over IGGG. We create the sequence by first creating all nodes by
rules of Layer 1, and then creating the edges for each pattern. For the complete
proof see [7].

6 Related Work

One closely related approach is the one by Alanen and Porres [2]: They describe
two algorithms, one to derive a context-free grammar from a meta model and
another one for deriving a meta model from a context-free grammar. However,
their algorithm for grammar derivation can only deal with composite associ-
ations between metaclasses, restricting it to tree-like meta models which is a
severe limitation for practical usage. Further, the algorithm does not support
ordinary associations with arbitrary cardinalities. This limitation is not surpris-
ing given the properties of context-free grammars and represents one reason for
the approach to use graph grammars instead of context-free grammars.

Another related problem is the one of automated snapshot generation for
class diagrams for validation and testing purposes, tackled by Gogolla et al. [10].
In their approach, properties that the snapshot has to fulfill are specified in
OCL. For each class and association, object and link generation procedures are
specified using the language ASSL. In order to fulfill constraints and invariants,
ASSL offers try and select commands which allow the search for an appropriate
object and backtracking if constraints are not fulfilled. The overall approach
allows snapshot generation taking into account invariants but also requires the
explicit encoding of constraints in generation commands. As such, the problem
tackled by automatic snapshot generation is different from the meta model to
graph grammar translation.

Formal methods such as Alloy [1] can also be used for instance generation:
After translating a class diagram to Alloy one can use the instance generation
within Alloy to generate an instance or to show that no instances exist. This
instance generation relies on the use of SAT solvers and can also enumerate
all possible instances. In contrast to such an approach, our approach aims at
the construction of a grammar for the metamodel and thus establishes a bridge
between metamodel-based and grammar-based definition of visual languages.

In the area of pattern recognition, there have been several approaches to gram-
matical inference: Given a finite set of sample patterns, a grammar should be
deduced such that the language generated by the grammar contains the sample
patterns. Originally, this problem has been tackled where patterns are encoded
as strings and regular grammars are generated [9]. In the context of graph gram-
mars, Jeltsch and Kreowski [12] describe how a hyperedge replacement grammar
can be derived from a finite set of graph samples. Our problem setting is slightly
different because we are given a meta model to describe all instances and not
only a finite set of samples.

Further (complementary) related work can be seen in the area of model-driven
testing [11] where the aim is to use a model of the system to produce suitable test

Generating Instance Models from Meta Models 169

data. The problem of generating those instances from the grammar that provide
a suitable coverage for testing can possibly benefit from existing research in this
area.

7 Conclusion and Future Work

Currently, the widespread approach of defining visual languages has one main
disadvantage: The systematic generation of instances of meta models is difficult
to automate which poses limitations for e. g. automated testing of model trans-
formations. In this paper, we have introduced the idea of instance-generating
graph grammars which is basically the equivalent to a Chomsky grammar for
textual languages.

On the basis of meta model patterns and corresponding derivation rules, our
approach allows the construction of an instance-generating graph grammar for
meta models without OCL constraints. This construction is based on a type
graph with inheritance. As running example, we have constructed an IGGG for
a simplified statechart meta model. Using the theory of typed graph transfor-
mation with inheritance, we have shown that the instance sets generated by an
IGGG and those induced by the corresponding type graph with multiplicities
are equal.

Automatic derivation of instances from meta models is a complex task which
needs tool support. So far, we have automated the construction of an IGGG
by providing a model transformation that automatically derives an IGGG from
a meta model. For a complete description of this implementation we refer to
the URL http://tfs.cs.tu-berlin.de/agg/MM2GraGra. Although the current
model transformation does not support all features of meta models yet, it nev-
ertheless shows the feasibility of our approach.

Future work should extend the automatic instance generation by meta models
with OCL constraints. Ensuring OCL constraints can be done in two ways: One
is to check constraints once the overall derivation of an instance model has
terminated. However, this leads to the generation of a large number of non-valid
instances. An approach avoiding the generation of invalid instances is presented
in [7, 8].

Further work is needed to apply our approach to testing model transfor-
mations: For that, techniques are needed that allow the generation of selected
instance models that represent a suitable diversity of all possible models. Further-
more a syntax graph grammar could be generated from a meta model providing
the basis for automatically generated visual editing rules.

References

1. The Alloy Analyzer - 3.0 Beta http: // alloy. mit. edu/ , 2000.
2. M. Alanen and I. Porres. A Relation Between Context-Free Grammars and Meta

Object Facility Metamodels. Technical Report TUCS No 606, TUCS Turku Center
for Computer Science, March 2003.

170 K. Ehrig et al.

3. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling
with Graph Transformation for Efficient Visual Language Definition and Model
Manipulation. In M. Wermelinger and T. Margaria-Steffens, editors, Proc. Funda-
mental Aspects of Software Engineering 2004, volume 2984. Springer LNCS, 2004.

4. A. S. Boujarwah and K. Saleh. Compiler test case generation methods: a survey
and assessment. Information and Software Technology, 39(9):617–625, 1997.

5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation Part I: Basic Concepts and Double Pushout
Approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph transformation, Volume 1: Foundations, pages 163–246. World Scientific,
1997.

6. H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Ter-
mination Criteria for Model Transformation. In M. Wermelinger and T. Margaria-
Steffen, editors, Proc. Fundamental Approaches to Software Engineering (FASE),
volume 2984 of Lecture Notes in Computer Science, pages 214–228. Springer Verlag,
2005.

7. K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Automatically Generating
Instances of Meta Models. Technical Report 2005–09, Technical University of
Berlin, Dept. of Computer Science, November 2005.

8. K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Translation of Re-
stricted OCL Constraints into Graph Constraints for Generating Meta Model
Instances by Graph Grammars. In Proc. (GT-VMT), 2006. To appear. A
preliminary version of the proceedings is available at http://hobbit.inf.mit.
bme.hu/GT-VMT2006/ProceedingsGTVMT2006.pdf.

9. K. S. Fu and T. L. Booth. Grammatical Inference: Introduction and Survey. IEEE
Transcations on Systems, Man, and Cybernetics, SMC-5:95–111, 409–423, 1975.

10. M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL Models in
USE by Automatic Snapshot Generation. Software and Systems Modeling, 2005.
To appear.

11. A. Hartman and K. Nagin. Model Driven Testing - AGEDIS Architecture, Inter-
faces, and Tools. In Proceedings 1st European Conference on Model-Driven Software
Engineering, 2003.

12. E. Jeltsch and H.-J. Kreowski. Grammatical Inference Based on Hyperedge Re-
placement. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors, Proc. 4th. Int. Workshop on Graph Grammars and their Application to Com-
puter Science, volume 532 of Lecture Notes in Computer Science, pages 461–474.
Springer-Verlag, 1991.

13. Object Management Group. MDA Guide Version 1.0.1, June 2003.
14. Object Management Group (OMG). UML 2.0 Superstructure Final Adopted Spec-

ification. OMG document pts/03-08-02, August 2003.
15. Object Management Group (OMG). OCL 2.0 Specification. OMG document

ptc/2005-06-06, June 2005.
16. A. Rensink and G. Taentzer. Ensuring Structural Constraints in Graph-Based

Models with Type Inheritance. In Proc. Fundamental Approaches to Software
Engineering (FASE), pages 64–79. LNCS 3442, Springer, 2005.

KM3: A DSL for Metamodel Specification

Frédéric Jouault and Jean Bézivin

ATLAS team, INRIA and LINA
{frederic.jouault, jean.bezivin}@univ-nantes.fr

Abstract. We consider in this paper that a DSL (Domain Specific Lan-
guage) may be defined by a set of models. A typical DSL is the ATLAS
Transformation Language (ATL). An ATL program transforms a source
model (conforming to a source metamodel) into a target model (con-
forming to a target metamodel). Being itself a model, the transformation
program conforms to the ATL metamodel. The notion of metamodel is
thus used to define the source DSL, the target DSL and the transfor-
mation DSL itself. As a consequence we can see that agility to define
metamodels and precision of these definitions is of paramount impor-
tance in any model engineering activity. In order to fullfill the goals of
agility and precision in the definition of our metamodels, we have been
using a notation called KM3 (Kernel MetaMetaModel). KM3 may itself
be considered as a DSL for describing metamodels. This paper presents
the rationale for using KM3, some examples of its use and a precise
definition of the language.

1 Introduction

Model engineering is strongly related to language engineering. Considering the
important number of problem domains, there is a need for an equally important
number of specialized languages. We have been using a language named KM3
(Kernel MetaMetaModel) to help defining these special purpose languages. This
paper presents the rationale, semantics and other particularities of this language.

KM3 has its roots in the complex and evolving relations between modeling
and visual languages. UML is a general purpose visual modeling language, but
not every modeling language is a general purpose visual language. The OMG
has proposed a language called MOF 2.0 [1] for the definition of its various
metamodels (SPEM, UML, CWM, etc.). The problem was that there was no
practical support environment for this language. As a replacement, the solution
found was to use UML CASE tools for this purpose. The price to pay for this
was an alignment of MOF with a subset of UML (mainly class diagrams). Since
this time, the alignment has been more or less maintained through the various
versions of UML and MOF. In other words, UML may be considered by certain
as a multi-purpose language allowing defining software object-oriented terminal
models and allowing also defining MOF metamodels. But this is not without
drawbacks. When we need to build a metamodel (e.g. as source or target of a
transformation), we have first to start building a UML class diagram, with cer-
tain properties. The result is serialized in a first XMI file corresponding to the

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 171–185, 2006.
c© IFIP International Federation for Information Processing 2006

172 F. Jouault and J. Bézivin

terminal model. It is then transformed into another XMI file corresponding to the
metamodel. This conversion from a UML model to a MOF metamodel is called
a promotion and implemented by some widely available tools like UML2MOF
available in the NetBeans MDR [2] suite or also by an ATL [3] model transfor-
mation program.

We have experimented for some time with this approach. When the number of
involved metamodels is limited (i.e. when one mainly deals with OMG fixed and
stable metamodels), there are no major problems. But when we need multiple
and evolving metamodels, we have found this approach to be very cumbersome.
The only alternative has been to define KM3, a specialized textual language for
specifying metamodels, including MOF metamodels. After experimenting with
this language for two years, we are completely convinced of the practicality of the
approach. Public libraries of more than one hundred metamodels expressed in
KM3 are now available [4]. ATL, a QVT-like [5] model transformation language,
uses KM3 natively to facilitate the handling of metamodels. Many other projects
are also based on this format.

What remained to do is to establish a precise semantics for KM3. This is one of
the objectives of the present work. Of course we have also to understand clearly
the purpose and rationale of metamodel writing languages. In order to do so, we
first need to define precisely what a metamodel exactly is. The definitions pro-
vided in this paper apply to the OMG MDA framework, but they are more gen-
eral and may also correspond to several other technical spaces as defined in [6].

This paper is organized as follows. Section 2 provides the basic definitions
related to models and DSLs. Section 3 provides an overview of KM3 including
some current applications. Section 4 comes back on a more formal conceptual
definition of KM3. A related work description is provided in section 5 before the
conclusion.

2 Definitions

We consider models as the unifying concept in IT engineering. Models come in
various flavors. A UML model, a Java program, an XML or RDF document, a
database relational table, an entity-association schema are all examples of mod-
els. We call all of these λ-models where λ identifies a technical space [6] associated
with a given precise metametamodel. A simple representation of terminal model,
metamodel and metametamodel is given in Figure 1.

Fig. 1. General organization of a metamodeling stack

KM3: A DSL for Metamodel Specification 173

We may consider two main definitions of a model corresponding to its inter-
nal organization and its potential utilization. We choose to focus here on the
organization of models. The study of model utilization and of its relations with
model organization is out of the scope of this work. Then we give a definition of
DSL and analyze the relations between DSLs and models.

2.1 Model Organization Definition

From an organization point of view, we propose the following definitions:

Definition 1. A directed multigraph G = (NG, EG, ΓG) consists of a finite set
of nodes NG, a finite set of edges EG, and a function ΓG : EG → NG × NG

mapping edges to their source and target nodes.

Definition 2. A model M = (G,ω, μ) is a triple where:

– G = (NG, EG, ΓG) is a directed multigraph,
– ω is itself a model (called the reference model of M) associated to a graph

Gω = (Nω, Eω, Γω),
– μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of

G to nodes of Gω.

Remarks. The relation between a model and its reference model is called con-
formance and is noted conformsTo or abbreviated in c2 throughout this paper.
Elements of ω are called metaelements. μ is neither injective (several model
elements may be associated to the same metaelement) nor surjective (not all
metaelements need to be associated to a model element).

Fig. 2. Definition of model and reference model

Figure 2 illustrates definition 2. The definition of model given above allows for
an indefinite number of upper modeling layers. For practical purpose, we need to
stop at some level. We observe that only three levels are used in several technical
spaces:

– In XML: documents, schemas and the schemas of XML Schema for XML,
– In EBNF : programs, grammars and the grammar of EBNF.

We call these levels: M1, M2 and M3. M1 consists of all models that are not
metamodels. M2 consists of all metamodels that are not the metametamodel.

174 F. Jouault and J. Bézivin

M3 consists of a unique metametamodel for each given technical space. We may
now proceed to giving additional definitions.

Definition 3. A metametamodel is a model that is its own reference model (i.e.
it conforms to itself).

Definition 4. A metamodel is a model such that its reference model is a meta-
metamodel.

Definition 5. A terminal model is a model such that its reference model is a
metamodel.

Figure 3 shows how to adapt the definition of model to this three-level modeling
stack. The structure for models defined in this section is compatible with the
OMG view as illustrated in the MDA guide [7].

Fig. 3. Metamodeling stack representation with model definition

2.2 Domain Specific Language

Language engineering is at the hearth of computer science. There are a variety of
categories of languages. We discuss here only a small facet of language engineer-
ing. A distinction is often made between programming languages and modeling
languages. Typical examples are PL/1 and UML. The distinction between these
categories has mainly to do with canonical executability and is currently much
evolving. Another distinction is between General Purpose Languages (GPLs)
and Domain Specific Languages (DSLs). PL/1 and UML are two examples of
GPLs. R [8], SQL [9] or Excel are examples of DSLs. Java and C# are examples
of general purpose programming languages.

KM3: A DSL for Metamodel Specification 175

We also understand that the distinction between GPLs and DSLs is orthog-
onal to many other language classifications. For example there are indifferently
visual or textual GPLs or DSLs. Similarly DSLs and GPLs may fall under var-
ious categories of being object-oriented, event-oriented, rule-oriented, function-
oriented, etc. There are examples of imperative and declarative GPLs and DSLs
as well.

A DSL is a language designed to be useful for a limited set of tasks, in con-
trast to general-purpose languages that are supposed to be useful for much
more generic tasks, crossing multiple application domains. A typical example
of DSL is GraphViz [10], a language used to define directed graphs, which
creates a visual representation of that graph as a result. Some GPLs have
started as DSLs and have sometimes evolved towards genericity to become
GPLs. The reverse process has not been observed in the history of programming
languages.

Like many other languages, DSLs have many common properties [11]:

– They have usually a concrete syntax
– They may also have an abstract syntax
– They have a semantics, implicitly or explicitly defined

Of course there are several ways to define these syntax and semantics. The most
known are grammar-based systems.

2.3 DSLs and Models

There are strong relations between DSLs and models. We discuss here the pos-
sibility of using model-based solutions for defining the syntax and semantics of
DSLs.

Definition 6. A DSL is a set of coordinated models.

Each model in this set contributes to a part of its definition. A given model may,
for instance, specify one of the following aspects:

– Domain definition metamodel. One of the defining entities of a DSL is
a Domain Definition MetaModel (DDMM). It introduces the basic entities
of the domain and their mutual relations. This base ontology plays a central
role in the definition of the DSL. For example, a DSL for directed graph
manipulation will contain the concepts of nodes and edges, and will state
that an edge may connect a source node to a target node. Such a DDMM
plays the role of the abstract syntax for a DSL.

– Concrete syntaxes. A DSL may have different concrete syntaxes. Each
one is defined by a transformation model mapping the DDMM onto a display
surface metamodel. Examples of display surface metamodels may be SVG
or DOT [10], but also XML. An example of such a transformation for a Petri

176 F. Jouault and J. Bézivin

net DSL is the mapping from places to circles, from transitions to rectangles
and from arcs to arrows. The display surface metamodel will then have the
concepts of Circle, Rectangle and Arrow.

– Execution semantics. A DSL may have an execution semantics definition.
This semantics definition is also defined by a transformation model mapping
the DDMM onto another DSL having itself an execution semantics or even
to a GPL. The firing rules of a Petri net may for example be mapped into a
Java code model.

– Other operations on DSLs. In addition to canonical execution, there are
plenty of other possible operations on programs based on a given DSL. Each
may be defined by a similar mapping represented by a transformation model.
For example if one wishes to query DSL programs, a standard mapping of
the DDMM onto Prolog may be useful. The study of these other operations
on DSLs is an open research subject.

3 KM3 Overview

3.1 Description

The purpose of KM3 is to give a relatively simple solution to define the Domain
Definition MetaModel of a DSL. KM3 is therefore a Domain Specific Language
to define metamodels:

– Domain definition metamodel. The DDMM of KM3 is a metameta-
model, to which other DDMMs conform. This DDMM may be defined in
KM3 (see [4]), just like EBNF (a notation to define grammars) may be de-
scribed in EBNF using only a few lines. It uses concepts like Class, Attribute,
and Reference. It is structurally close to eMOF 2.0 [1] and Ecore [12].

– Concrete syntax. A default textual concrete syntax has been defined for
KM3 (see [4]). This allows straightforward definitions of metamodels with
any text editor.

– Semantics. The semantics of KM3 enables the specification of metamodels
and models according to the definitions given in section 2. A precise concep-
tual definition of KM3 is presented in section 4. Mappings to and from MOF
1.4 [13] and Ecore have notably been defined in ATL, making KM3 usable
with tools like Eclipse EMF [12] and Netbeans MDR.

As a metametamodel, KM3 is simpler than MOF 1.4, MOF 2.0 [1] and Ecore.
It contains only 14 classes whereas, for instance, Ecore has 18 classes and MOF
1.4 has 28 classes. Only the core concepts of these other metametamodels are
available in KM3.

Figure 4 describes an XML metamodel in the standard visual notation of
class diagrams. This XML metamodel corresponds to the following KM3
description:

KM3: A DSL for Metamodel Specification 177

Fig. 4. Visual presentation of an XML metamodel

3.2 Applications

KM3 has been defined as an answer to frequent requests of users that were defin-
ing model transformations in the ATL language. In principle source and target
metamodels for QVT-like transformations should be written in XMI. When the
transformation is based on standard metamodels like UML metamodels, the XMI
serialization of these metamodels may be found on the OMG site and there is
no need for any additional formalism.

The practice of model transformation, with a growing community of ATL
users, has however obliged to amend this opinion. During the development of
these transformations, it became clear that very often the standard metamodels
were not sufficient and that many of the transformations needed specific meta-
models. Furthermore, the definition of these metamodels is often an iterative
process involving a progressive elaboration.

In order to illustrate this, we provide below some examples of transformations
written in ATL. The complete code and documentation of these transformations
may be found in the open source library of transformation available on [14] and [15].

– Ant2Maven and Make2Ant are partial transformations between well known
software engineering build tools (Make, Ant and Maven).

178 F. Jouault and J. Bézivin

– BibTeX2DocBook is a transformation of a BibTeXML model to a DocBook
composed document.

– The JavaSource2Table example computes a static call graph of a Java pro-
gram and presents it in a tabular style. From there, one may use the XHTML
or the Excel metamodels to project to other display surfaces, by transfor-
mation chaining.

– The KM32DOT allows drawing graphical presentations of metamodels. DOT
is an automatic graph layout program from GraphViz [10]. The aim of this
transformation is to generate a visualization, in the form of a class diagram,
of any KM3 metamodel by automatic layout

– The UMLActivityDiagram2MSProject example describes a transformation
from a loop free UML activity diagram (describing some tasks series) to
MS Project. The transformation is based on a simplified subset of the UML
State Machine metamodel. This transformation produces a project defined
in conformance to a limited subset of the MSProject metamodel.

The following table (Figure 5) gives another sample from the same model trans-
formation library, where the numbers of classes in the source and target meta-
models are provided. Without describing in detail all these transformations, it
becomes clear that most source and target metamodels have to be defined and
even in the case they are standard (like the UML activity diagram), they often
correspond to a small subset of the standard metamodel.

Fig. 5. A sample of transformations from the ATL library

As a consequence, the definition of source and target metamodels in a trans-
formation is an important part of the design of this transformation. We need
a notation that will allow easy and precise definition and modification of these
metamodels. Even if this seems counter intuitive, users have been asking for
textual languages instead of visual languages for performing this task.

The KM3 language has been very useful in supporting rapid and precise defi-
nition of metamodels for various situations. When studying the interoperability
between several tools (like Bugzilla, Make, MS Project, or Mantis), the data

KM3: A DSL for Metamodel Specification 179

models of these tools are usually captured in a metamodel, and the bridges may
be designed as transformations, directly using these metamodels.

We have previously mentioned the initial library of ATL transformations.
What is also interesting is that a significant library of the corresponding meta-
models has also grown in the same time and may be found at [16]. There are
many issues that can be studied on the basis of this initial library. The first one
is related to reusability of these metamodels. More important questions may be
raised on the various relations that may hold between these metamodels and
also to the metadata about them.

4 Conceptual Definition of KM3

Definition 7. A KM3-model is a model defined using KM3 as a metameta-
model.

This section only deals with KM3-models. Therefore, we use model to mean
KM3-model. We present here a formal specification of KM3 based on first order
logic. Only metamodels, not terminal models, may conform to KM3. However,
KM3 semantics also impacts terminal models by constraining them according
to their reference models. Two main predicates are used to define KM3-models,
including the KM3 metametamodel itself. For a model M (see definition 2), we
define:

– Node(x, y). This predicate states that a node x ∈ NG is associated to a node
y ∈ Nω by the function μ.

– Edge(x, y, z). This predicate states that an edge between node x ∈ NG and
node y ∈ NG is associated to a node z ∈ Nω by the function μ. In KM3,
multiple edges between two given nodes may only exist if their associated
metaelements are distinct. Therefore, the triple (x, y, z) uniquely identifies
an edge.

Formulas are used to express constraints on KM3-models. We start by defining
a simplified version of KM3 called SimpleKM3 with only classes and references.
Then we introduce additional concepts: opposite references and inheritance.

4.1 Definition of SimpleKM3

SimpleKM3 is a simplified version of KM3 using only classes and references.
A visual representation of SimpleKM3 is given in Figure 6. Figure 7 gives the
formal definition of SimpleKM3. There are only two classes: class (line 1) and
reference (line 2). There are two references: features (line 3) and type (line 4).
The features reference connects a class to its references (lines 5 and 6). The type
reference connects a reference to its type (lines 7 and 8).

We define a new predicate IsKindOf(x, y), which is for now equivalent to
predicate Node(x, y):

∀xyIsKindOf(x, y) ↔ Node(x, y) (1)

180 F. Jouault and J. Bézivin

Fig. 6. Class diagram representation of SimpleKM3

1. Node(class, class)
2. Node(reference, class)
3. Node(features, reference)
4. Node(type, reference)

5. Edge(class, features, features)
6. Edge(features, reference, type)
7. Edge(reference, type, features)
8. Edge(type, class, type)

Fig. 7. Formal definition of SimpleKM3

It will be redefined in section 4.3 when we introduce class inheritance in Sim-
pleKM3. We still use the Node(x, y) predicate to define nodes but use this new
predicate in formulas that are also valid for subclasses. This is the case for for-
mulas (5) and (6).

A SimpleKM3 -model (i.e. model, metamodel or metametamodel) is valid if
the following formulas are verified:

– Metaelement uniqueness. μ, as a function, can only associate a single
metaelement to a given model node.

∀xyzNode(x, y) ∧Node(x, z)→ y = z (2)

There is no similar formula for edges because there may be several edges of
different types between two given nodes.

– Node metaelelements are classes. Any node that is used as a metaele-
ment of another node must have node class as its metaelement.

∀xyNode(x, y) → Node(y, class) (3)

– Edge metaelements are references. An edge can only exists between
nodes and must have node reference as its type.

∀xyzEdge(x, y, z)→ (∃xtNode(x, xt)) ∧ (∃ytNode(y, yt)) (4)
∧Node(z, reference)

– Edge target. An edge typed by reference z can only target a node typed
yt if the type of z is yt.

∀xyzEdge(x, y, z)→ (∃ytIsKindOf(y, yt) ∧ Edge(z, yt, type)) (5)

– Edge source. An edge typed by reference z can only have a node typed xt

as source if z is a feature of xt.

∀xyzEdge(x, y, z)→ (∃xtIsKindOf(x, xt) ∧ Edge(xt, z, features)) (6)

KM3: A DSL for Metamodel Specification 181

– Reference type uniqueness. A reference has a unique type.

∀xyzEdge(x, y, type) ∧ Edge(x, z, type)→ y = z (7)

We must specify this constraint in SimpleKM3 because it does not have the
concept of multiplicity.

4.2 Adding Opposite References

Opposite references work in pairs. They are especially convenient to enable bidi-
rectional navigation. For instance, in our first version of SimpleKM3, although
we can get the features of a class, we cannot get the class owning a given ref-
erence. Figure 8 defines the opposite reference belonging to and targeting the
reference class.

9. Node(opposite, reference) 11. Edge(opposite, reference, type)
10. Edge(reference, opposite, features)

Fig. 8. Addition of opposite reference to SimpleKM3

A SimpleKM3 -model (i.e. model, metamodel or metametamodel) with oppo-
site is valid if the following formulas are verified:

– Opposite uniqueness. A reference has at most one opposite.

∀xyzEdge(x, y, opposite) ∧ Edge(x, z, opposite)→ y = z (8)

– References work in pairs

∀xyEdge(x, y, opposite)→ Edge(y, x, opposite) (9)

– Opposite references have opposite extremities

∀xyzEdge(x, y, opposite) ∧ Edge(z, x, features) → Edge(y, z, type) (10)

We can now extend SimpleKM3 with an owner reference opposite to the features
reference as shown on Figure 9. The resulting definition of SimpleKM3 corre-
sponds to the class diagram given in Figure 10. It is now possible to navigate
from reference to class.

12. Node(owner, reference) 15. Edge(owner, features, opposite)
13. Edge(reference, owner, features) 16. Edge(features, owner, opposite)
14. Edge(owner, class, type)

Fig. 9. Addition of some opposite references to SimpleKM3

182 F. Jouault and J. Bézivin

Fig. 10. Class diagram representation of SimpleKM3 with opposites

4.3 Adding Inheritance

In KM3, inheritance allows reuse of references defined in supertypes. Overriding
of inherited features is not allowed. Figure 11 introduces the supertypes refer-
ence from class to class. Figure 12 gives the class diagram of SimpleKM3 with
inheritance. In order to be able to use inherited references or to define edges
targeting subclasses of a reference type, we redefine IsKindOf(x) (see formula
1) accordingly:

∀xyIsKindOf(x, y) ↔ Node(x, y) ∨ (∃zNode(x, z) ∧ConformsTo(z, y)) (11)

This new definition makes use of the ConformsTo(x, y) predicate, recursively
defined as follows:

∀xyConformsTo(x, y) ↔ (x = y)∨ (12)
(∃zEdge(x, z, supertypes) ∧ConformsTo(z, y))

Circular inheritance is forbiden. The ConformsTo(x, y) predicate could not be
defined otherwise. With this new definitions, formulas (6) and (5) remain valid.

17. Node(supertypes, reference) 19. Edge(supertypes, class, type)
18. Edge(class, supertypes, features)

Fig. 11. Addition of inheritance to SimpleKM3

Fig. 12. Class diagram representation of SimpleKM3 with opposites and inheritance

4.4 Other KM3 Concepts

We defined the formal semantics of the remaining KM3 concepts as well: pack-
ages, class abstractness, data types, attributes, enumerations, reference contain-
ment, multiplicity, etc. However, they do not fit in this paper because of space
limitation. A complete specification of KM3 in Prolog is available on the AM3

KM3: A DSL for Metamodel Specification 183

GMT website [4]. This program uses the same predicates we defined in this sec-
tion plus the Prop(x, y, z) predicate where x ∈ NG, y ∈ Nω is an attribute, and
z is a value. We do not further detail this predicate, which is used as a shortcut
to avoid representing primitive values as nodes explicitly. The set of constraints
implemented in the program is illustrative of the characterization of KM3. We
do not claim completness here.

5 Related Work

Other modeling frameworks offer capabilities similar to those of KM3:

– OMG MOF. MOF is a standard metametamodel from OMG, of which
there exist several versions (e.g. MOF 1.4 [13] and MOF 2.0 [1]). All of them
are more complex than KM3 (i.e. they contain more classes, see section 3.1).
None has a formal semantics. Their standard concrete syntax is XMI, which
is based on XML and is, as such, more verbose than KM3. As noted in
section 3.1, we have defined ATL transformations from MOF 1.4 to KM3
and from KM3 to MOF 1.4.

– HUTN. Human Usable Textual Notation [17] (HUTN) is a standard by
OMG to give a default textual notation to each metamodel. Because it is an
automatic mapping from MOF to EBNF, it is more verbose than KM3.

– Eclipse EMF Ecore. Ecore [12] is a metametamodel close to MOF 2.0
but with a standard textual notation: emfatic. One difference with KM3
is that emfatic provides EMF-specific constructs (e.g. to customize Java
code generation). One of our experiments has shown that such additional
information may be embedded into KM3 comments. Another difference is
that Ecore has no formal semantics. As noted in section 3.1, we have defined
ATL transformations from Ecore to KM3 and from KM3 to Ecore.

– Typed graphs. Typed Attributed Graphs [18] are the conceptual frame-
work on which graph transformation is based. They have a precise formal
semantics. In opposition to KM3 and the definitions given in section 2, there
is no explicit metametamodel: type graphs are not themselves typed.

– sNets. sNets [19] are one of our past experiments. We have learnt much
from them and KM3 is based on this knowledge. One difference with KM3
is that there is an explicit representation of μ in the sNet metametamodel.
However this may lead to using hypergraphs to provide a complete general
solution, with possible strong constraints on implementation overhead.

6 Conclusions

In this paper we have proposed a metamodel definition language. We have seen
other possibilities of DSLs for performing such tasks like XMI or Emfatic. Each
DSL has some specificities, some advantages and drawbacks. For Emfatic for
example, the projection to Java is an important feature; for XMI, the possibil-
ity to take into account terminal models as well as metamodels is an essential
property.

184 F. Jouault and J. Bézivin

The KM3 language is intended to be a lightweight textual metamodel def-
inition language allowing easy creation and modification of metamodels. The
metamodels expressed in KM3 have good readibility properties. The formalism
is sufficiently rich to support essential information. Additional information can
be expressed as metadata pragmas not described here. Metamodels expressed in
KM3 may be easily converted to/from other notations like Emfatic or XMI.

Among the properties of KM3 is the possibility to use it for the definition of
non-MOF based models. KM3 has also been designed to cross technical spaces.

The contribution of this paper is a clean semantics for a metamodel definition
language. To the best of our knowledge, such a definition has not been proposed
for such a language. As a side effect of this work, we have been able to give
a precise and original definition of a model, in the context of multiple techni-
cal spaces. All the tools currently available in the ATLAS Model Management
Platform [15] are completely based on this operational definition.

Acknowledgements

This work has been partially supported by ModelWare, IST European project
511731. We thank Ivan Kurtev and all the members of the ATLAS team for
their support to this work.

References

1. OMG: Meta Object Facility (MOF) 2.0 Core Specification, OMG Document
ptc/03-10-04, http://www.omg.org/docs/ptc/03-10-04.pdf. (2003)

2. netBeans.org: Netbeans Meta Data Repository (MDR), http://mdr.netbeans.
org/. (2006)

3. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Computer Science.,
Springer-Verlag (2006) 128–138

4. ATLAS team: ATLAS MegaModel Management (AM3) Home page, http://
www.eclipse.org/gmt/am3/. (2006)

5. OMG: MOF QVT Final Adopted Specification, OMG Document ptc/2005-11-01,
http://www.omg.org/docs/ptc/05-11-01.pdf. (2005)

6. Bézivin, J., Kurtev, I.: Model-based technology integration with the technical
space concept. In: Proceedings of the Metainformatics Symposium, Springer-Verlag
(2005)

7. Object and Reference Model Subcommittee (ORMSC) of the OMG Architecture
Board: A Proposal for an MDA Foundation Model, white paper OMG-ORMSC/05-
08-01, http://www.omg.org/cgi-bin/doc?ormsc/05-08-01. (2005)

8. Bates, D., et al.: R Language Definition, http://stat.ethz.ch/R-manual/
R-patched/doc/manual/R-lang.html . (2006)

9. McJones, P.R., ed.: The 1995 SQL Reunion: People, Project, and Politics, May
29, 1995. Volume SRC1997-018. (1997)

10. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software — Practice and Experience 30(11) (2000)
1203–1233

KM3: A DSL for Metamodel Specification 185

11. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”?
Computer 37(10) (2004) 64–72

12. Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A., Grose, T.J.:
Eclipse Modeling Framework. Addison Wesley (2003)

13. OMG: Meta Object Facility (MOF) Specification, version 1.4, OMG Doc-
ument formal/2002-04-03, http://www.omg.org/technology/documents/formal/
mof.htm . (2002)

14. Eclipse Foundation: Generative Model Transformer (GMT) Home page, http://
www.eclipse.org/gmt/. (2006)

15. ATLAS team: ATLAS Transformation Language (ATL) Home page,
http://www.eclipse.org/gmt/atl/. (2006)

16. ATLAS team: Atlantic Metamodel Zoo, http://www.eclipse.org/gmt/am3/zoos/
atlanticZoo/. (2006)

17. OMG: Human-Usable Textual Notation, v1.0, OMG Document formal/04-08-01,
http://www.omg.org/technology/documents/formal/hutn.htm. (2004)

18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed
graph transformation. In: Graph Transformations: Second International Confer-
ence, ICGT 2004. Volume 3256 of Lecture Notes in Computer Science., Springer-
Verlag (2004) 161–177

19. Bézivin, J.: sNets: A first generation model engineering platform. In: Satellite
Events at the MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Com-
puter Science., Springer-Verlag (2006) 169–181

Defining Object-Oriented Execution Semantics
Using Graph Transformations

Harmen Kastenberg�, Anneke Kleppe��, and Arend Rensink

University of Twente
Department of Computer Science

Enschede, The Netherlands
{h.kastenberg,rensink,kleppeag}@cs.utwente.nl

Abstract. In this paper we describe an application of the theory of
graph transformations to the practise of language design. In particular,
we have defined the static and dynamic semantics of a small but real-
istic object-oriented language (called TAAL) by mapping the language
constructs to graphs (the static semantics) and modelling their effect by
graph transformation rules (the dynamic semantics). This gives rise to
execution models for all TAAL-programs, which can be used as the basis
for formal verification.

This work constitutes a first step towards a method for defining all
aspects of software languages, besides their concrete syntax, in a consis-
tent and rigorous manner. Such a method facilitates the integration of
formal correctness in the software development trajectory.

1 Introduction

A widely recognized proposal for combating the maintenance and evolution prob-
lems faced in software engineering is the model driven approach, brought to
the world’s attention by the OMG’s Model Driven Architecture (MDA) frame-
work [17]. In this approach, models and model transformations are central con-
cepts. The models are specified in diverse (modeling and programming) software
languages (SLs), and the model transformations define relations between these
languages.

Model transformations are intended to be correctness preserving: they should
not introduce errors or essential changes. This, however, can be guaranteed only
if the meaning of the SLs involved is defined with sufficient precision. Unfor-
tunately, this is often lacking: many SLs have a well-defined syntax but only
an informal semantics, e.g. described by text or, in the case of a programming
language, by a compiler.

The longer-term goal of our research is to define a way in which all aspects of
SLs, besides their concrete syntax, can be defined in a consistent and rigorous
� The author is employed in the GROOVE project funded by the Dutch NWO (project

number 612.000.314).
�� The author is employed in the GRASLAND project funded by the Dutch NWO

(project number 612.063.408).

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 186–201, 2006.
c© IFIP International Federation for Information Processing 2006

Defining Object-Oriented Execution Semantics 187

manner. As a common formal foundation we use graphs and graph transforma-
tions, which we believe to be powerful enough to capture all relevant SL aspects.
Furthermore, current research in the field of graph transformations [23] offers
us a large knowledge base of theories ready to apply to our topic. Ultimately,
we plan to develop a meta-language for designing SLs. This meta-language will
enable us to provide semantic definitions of the source and target SLs involved
in a given model transformation on a compatible basis; this in turn will en-
able us to precisely formulate and check the requirement of correctness preser-
vation. We believe these abilities to be essential in realizing the full potential
of MDA.

This paper describes the first phase of our research: the formal definition of
both the static and the dynamic semantics of a small but realistic object-oriented
language, called TAAL, using graph transformations. We have defined our own
language because in this way we can avoid dealing with more complex con-
structs like exception handling and multi-threading. Still TAAL includes com-
mon object-oriented features like inheritance. While formal, we do not leave this
exercise on a theoretical level only: we have developed a parser/analyzer and used
an existing graph transformation tool so as to actually simulate programs. In
fact, all graphs shown in this paper are directly taken from the implementation.
We are confident that we can extend the approach described here to be appli-
cable to a large category of SLs, including modeling languages and imperative
programming languages.

This paper is structured as follows. Sect. 2 gives an overview of our approach
and introduces graph transformations and TAAL. In Sect. 3 we discuss how we
represent and generate the flow of control of a TAAL-program. Sect. 4 then dis-
cusses our main contribution, namely our way of specifying object-oriented dy-
namic semantics through an operational definition. We conclude in Sect. 5 with
a brief description of the tooling used and some remarks on related and further
work. All steps described in this paper are explained by using a simple example.

2 Approach

In this work we model object-oriented programs as graphs, and specify their
semantics using graph transformations. The approach we have taken is to define a
small language that nonetheless contains the most relevant concepts from object-
oriented programming languages. This language is called TAAL. We define a
series of transformations that will turn any TAAL-program into a simulation of
its execution.

The transformations are depicted in Fig. 1. The first transformation, from tex-
tual program to Flat Abstract Syntax Graph, actually consists of three trans-
formations. Due to space limitations, we do not discuss the details of these
transformations, two of which are similar to the first steps in a compiler [3].
The interested reader is referred to [13]. The more interesting transformations,
i.e. the flow graph construction and the simulation, involve the application of

188 H. Kastenberg, A. Kleppe, and A. Rensink

simulation

Program Graph
static analysis
parsing and

Textual program

flow graph
construction

Abstract Syntax Graph
Flat

Execution Graph

Fig. 1. Overview of the transformation from program to simulation

graph transformations and will therefore be discussed in more detail. The graph
transformations are carried out in the Groove Tool Set [20].

During flow graph construction we apply a set of graph transformation rules to
transform a plain graph representing the abstract syntax of the textual program,
called the Flat Abstract Syntax Graph, into a graph that includes control flow
information. The result of this transformation is called the Program Graph. The
execution of the TAAL-program is simulated by Execution Graphs which are the
result of applying another set of graph transformation rules. These rules define
the dynamic (or execution) semantics of our object-oriented language TAAL.

Note that the Program Graph and the corresponding Execution Graphs are
at a different level of modelling. This is reflected in Fig. 1 by the use of a vertical
arrow instead of a horizontal one. The Program Graph is a single graph rep-
resenting the static TAAL-program including control flow information, whereas
during simulation the dynamics of the program execution are represented by
a series of Execution Graphs, each of which represents the system state at a
certain point in time.

2.1 The Formalism

After the parsing and static analysis phase, the textual program in Fig. 1 is rep-
resented as a plain graph (the Flat Abstract Syntax Graph), and the subsequent
transformations are driven by sets of graph transformation rules. Such rules are
themselves given as graphs. This will be shown later in this section.

In this paper we use edge-labelled graphs, defined over a global set Lab of
labels, as follows.

Definition 1. A graph G = 〈V,E〉 consists of:
– a set V of vertices (or nodes), and
– a set E ⊆ V × Lab× V of edges.

The following is a definition of a graph transformation rule.

Definition 2. A graph transformation rule p = 〈L,R,N〉 consists of:

– a graph L being the left hand side (LHS) of the rule;
– a graph R being the right hand side (RHS) of the rule;
– a set of graphs N being the negative application conditions (NACs).

Defining Object-Oriented Execution Semantics 189

The application of a graph transformation rule transforms a graph G, the source
graph, into a graph H , the target graph, by looking for an occurrence of L in
G and then replacing that occurrence of L with R, resulting in H . The role
of the NACs [10] is that they can still prevent application of the rule when an
occurrence of the LHS has been found, namely if there is an occurrence of some
N ∈ N in G that extends the candidate occurrence of L. A precise technical
description of the search for occurrences and the transformation process is given
in [22]; for a more theoretical exposition see [23].

It is important to realize that the application of a graph transformation rule to
a given graph G is non-deterministic in that there may be more than occurrence
of L in G; but for any particular occurrence, the application is deterministic.

Individual graph transformation rules are collected into graph production sys-
tems (GPSs), which as a whole are used to model transformation or compu-
tation processes. The application of a GPS comes down to the unscheduled,
non-deterministic application of successive individual rules until a graph is ob-
tained that cannot be transformed any further. Note that this introduces another
level of non-determinism, namely in the choice of rule to be applied. A GPSs
is confluent if it is such that the order of application actually does not make a
difference to the end result.

In this paper we use two GPSs, namely to model the flow graph construction
and simulation steps of Fig. 1. As we will see, the first of these is confluent
whereas the second is deterministic due to the fact that at any stage during the
transformation system, at most one rule is applicable, which then has precisely
one occurrence.

When visualizing graphs and graph transformation rules, we use a shorthand
notation for labelled edges pointing from one node to itself, so called self-edges.
In this shorthand notation we put the label inside the node.

Example 1. Fig. 2 (i) depicts a graph transformation rule by showing its LHS and
its RHS. The LHS consists of three nodes and five labelled edges; the RHS con-
sists of three nodes and six labelled edges. Note that self-edges are also counted.
The result of applying this transformation rule is the creation of a flowNext-edge
and the redirection of the flowIn-edge. (To be precise, the flowIn-edge in the LHS
graph will be removed and a new flowIn-edge will be created.)

In this paper we use a shorthand notation for graph transformation rules by
displaying them as single graphs. The different roles a graph element can have
in the transformation process are distinguished by different coloured shapes:

– thin solid nodes and edges, called readers: they are required to be in the
source graph in order for the rule to apply, and are unaffected by rule appli-
cation, i.e. they are still present in the target graph.

– thin dashed nodes and edges (blue in a coloured print-out), called erasers :
they are required to be in the source graph in order for the rule to apply,
and are deleted by rule application.

– fat solid nodes and edges (green), called creators : they are not required to
be in the source graph, and are created by rule application.

190 H. Kastenberg, A. Kleppe, and A. Rensink

– fat dashed nodes and edges (red), called embargoes (or negative application
conditions): they are forbidden to occur in a graph in order for the rule to
apply.

Fig. 2 (ii) shows the graph transformation rule from Fig. 2 (i) using the
described shorthand notation. Note that this rule does not include negative
application conditions.

(i) L and R separated (ii) L and R in one graph

Fig. 2. Example of a graph transformation rule

When using graphs for representing states and graph transformations as state
transitions, applying graph transformations is analogue to creating a transition
system in which the transitions are labelled with the names of the transformation
rules. In Sect. 4 we will show a labelled transition system generated this way
representing the simulation of an example program.

2.2 The Mini Language TAAL

In this section we discuss the mini language TAAL, which incorporates the basic
aspects of many commonly used object-oriented programming languages. For in-
stance, the notions of class, attribute, operation, inheritance, instantiation and
overriding are all present. The meta-model shown in Fig. 3 gives an impression of
the abstract syntax of the language. The driving intuition behind the semantics
is that a TAAL-program has essentially the same meaning as a corresponding
Java-program. An important difference with Java is that the start of the program
is represented by a single start expression. Listing 1 contains a TAAL-program
that will be used as example throughout this paper. More details on the def-
inition of TAAL can be found in [13]. We emphasize that the developed sets
of transformation rules enable simulation of any TAAL-program, not just this
example.

Some elements from Fig. 3 that will be referred to later in this paper are
Program, ObjectType, OperImpl, and VarDecl. The class Program represents the
whole program. The Flat Abstract Syntax Graph of any TAAL-program has ex-
actly one instance of this class. Within a TAAL-program we can declare multiple
data-structures, each being an instance of ObjectType. Such a data-structure may
contain operations (being instances of OperImpl) and fields (being instances of
VarDecl). The classes Statement and Expression are abstract and indicate that
the language facilitates different types of both.

Defining Object-Oriented Execution Semantics 191

StatementOperImpl

10..1

+body

10..1

PrimitiveType

ExpStat
Program

name : String
1

+startExp

1

Expression

Signature

Type

name : String

0..n

0..1

+types

0..n
{ordered}

0..1

1+returnType 1

0..n

+paramTypes

0..n{ordered}

VarDecl

name : String

1

+initExp

1

1 +type1

OperDecl 0..n0..1

+params

0..n{ordered}0..1

0..n

0..1 +localVars

0..n
{ordered}

0..1

1

1..n

+signature1

1..n

0..n

0..1

+operations

0..n {ordered}

+owner 0..1

ObjectType

0..1

+superType

0..1

0..n

0..1

+attributes

0..n {ordered}

0..1

NullType

<<singleton>>

Fig. 3. The types in the abstract syntax graph meta-model

1 program amoebaworld
2 { new Amoeba().clone() }
3 class Amoeba
4 child: Amoeba;
5 clone() : Amoeba {
6 child := new Amoeba();
7 return child;
8 }
9 endclass

10 endprogram

Listing 1. An example TAAL-program

The result of the parsing and static analysis of a TAAL program (see Fig. 1) is
a Flat Abstract Syntax Graph. The Flat Abstract Syntax Graph of the example
from Listing 1 is shown in Fig. 4. This graph is an instance of the meta-model
from Fig. 3. Some cross-referencing edges have been grayed-out in order to make
the graph more readable.

3 Flow Graph Construction

Flow graph construction is the analysis of the flow of control and the construction
of flow graph elements which will later on enable the program’s simulation. The
result of this analysis is the Program Graph (cf. Fig. 1), which consists of the

192 H. Kastenberg, A. Kleppe, and A. Rensink

Fig. 4. Flat Abstract Syntax Graph for the example

Flat Abstract Syntax Graph enriched with a number of flow graphs. In this
section we will describe the structure of flow graphs and the way we construct
them.

Flow Graph Structure. Traditionally (e.g. [9]), flow graphs are directed graphs
consisting of four types of nodes (also called flow elements), namely one start
node, one end node, and a number of procedure and predicate nodes in between,
which are connected by successor -edges. In our approach we enrich flow graphs
with a new node-type, namely the context node, and distinct between three
types of successor-edges, namely flowNext, flowTrue, and flowFalse. Fig. 5 shows
the meta-model of such Flow Graphs.

Expression
ContextNodeProcedureNodePredicateNode

11

+condition

FlowElement

1

+flowNext

1

1 +flowNext1

1+flowTrue 1

1+flowFalse 1

Fig. 5. Flow Graph meta-model

Procedure nodes represent statements or expressions after which it is deter-
ministic which statement to execute next. Predicate nodes represent executable
statements and expressions that are related to a boolean condition. The actual
value of the condition determines which statement will be executed next. The
context nodes represent the start and end node of each Flow Graph. Note that
as a result every Flow Graph is cyclic.

Defining Object-Oriented Execution Semantics 193

The edges in a Flow Graph represent the sequential relation between state-
ments. Fig. 5 shows what kind of edges are allowed between different flow ele-
ments. The edges have one of the labels flowNext, flowTrue, or flowFalse.

Flow Graphs, in this paper, appear at three different contexts corresponding
to the type of context-node (the types are elements from Fig. 3).

– Program context. Program Flow Graphs control the startup of the program
being modelled. In TAAL, program startup is modelled by the execution of
the initial expression of the program (line 2 in Listing 1). A Program Graph
always contains exactly one Flow Graph at Program context.

– ObjectType context. ObjectType Flow Graphs are traversed when an object
is instantiated. Object creation will be discussed in more detail in Sect. 4.
A Program Graph contains an ObjectType Flow Graph for each ObjectType
being specified in the original program.

– OperImpl context. OperImpl Flow Graphs control the execution of the body
of operations. A Program Graph contains an OperImpl Flow Graph for each
operation that has been implemented in the original program.

Flow Graphs that appear in the Program Graph at any context are not inter-
connected. The connection between different Flow Graphs is established during
simulation. For example, when instantiating a class inside a operation, the Flow
Graph of that operation and the Flow Graph of the object to be created are
then ‘dynamically connected’. This will be discussed in more detail in Sect. 4.

Graph Transformations for Flow Construction. To extract the flow informa-
tion from the abstract syntax graph, we apply a set of graph transformation
rules that traverses the syntax graph in a top-down fashion. The general ap-
proach is that for every type of statement or expression we specify a graph
transformation rule. Each rule contains a node representing the statement type
involved. Fig. 2 showed the Flow Graph construction rule for a VarDecl-element.
These graph transformation rules together form a confluent graph production
system.

After finishing the phase of Flow Graph construction the part of the Program
Graph which models the Flow Graphs (i.e. projected on the flow-edges) is an
instance of the meta-model shown in Fig. 5. The Program Graph which is con-
structed from the Flat Abstract Syntax Graph from Fig. 4 is shown in Fig. 6.
Elements in Fig. 6 that are not part of any Flow Graph are grayed-out.

4 Simulation

This section presents the next step from Fig. 1, namely defining the opera-
tional semantics of TAAL, in terms of graph transformation. The graphs being
transformed are so-called Execution Graphs, which represent snapshots of the
program state. The transformation rules themselves simulate individual pro-
gram constructs. The resulting GPS, when applied to a flow graph of the kind

194 H. Kastenberg, A. Kleppe, and A. Rensink

Fig. 6. Program Graph of the example highlighting its Flow Graphs

discussed in the previous section, gives to a transition system, in which the
graphs are states and rules applications are transitions. Since program execution
is deterministic, so are the transition systems; in other words, at any point
in time at most one rule from the GPS is applicable. (In Sect. 5 we briefly
discuss the extension of this work to parallel programs, which instead will be
non-deterministic, due the independent execution of parallel threads.)

4.1 Execution Graphs

Each Execution Graph combines three kinds of information: a Program Graph
(see Sect. 3), which provides static context information, a Value Graph, which
models the data part of the current state, and a Frame Graph, which models the
process part of the current state. In compiler terms, the Value Graph models
the heap and the Frame Graph the stack during program execution.

A Value Graph contains elements representing the objects that will be created
and referred to while executing the program. A meta-model for the Value Graph
is shown in Fig. 7. The meta-model was inspired by the instance models from
[5] and [18]. The new concepts in value graphs are: Value, which stands for any
data value, be it a primitive value or an object; and Slot, which is essentially
a container for such a value. Slots can either represent program variables (the
sub-type VarSlot) or holders of auxiliary, intermediate values (AuxSlot). For the
former there is always an associated variable declaration (VarDecl), whereas the
latter are bound to Expressions in the Program Graph at which the intermediate
values occur.

The Frame Graph meta-model is shown in Fig. 8. It essentially introduces
only one new type of node: the Frame. This stands for the execution of the

Defining Object-Oriented Execution Semantics 195

ObjectVal VarSlot

0..n

+attributes

0..n

Slot

VarDecl

1 +instanceOf1

Value 1 +value1

AuxSlot

Type
1+type1

1

+instanceOf

1

Expression

1+at 1

1 +resultType1

LiteralVal

symbol : String

NullType

<<singleton>>PrimitiveType

NullLitVal

<<singleton>> PrimLitVal

Fig. 7. Value Graph meta-model

program fragment at a ContextNode (see Fig. 5), with a pointer (labelled pc for
program counter) to the FlowElement in the corresponding Flow Graph at which
control currently resides. In fact, for each sub-type of ContextNode there is one
Frame sub-type.

An example (partial) Execution Graph can be found in Fig. 9. This repre-
sents the state of our example program (Listing 1) before executing the return-
statement in Line 7. At this moment three frames are active: the ProgramFrame,
the OperFrame for the clone method, and the ConstrFrame for the creation of
the new object.

ProgramFrame

VarDecl Signature

OperFrame

0..n

+param

0..n 1 +signature1

ObjectType
0..1

+lookup

0..1

ConstrFrame

0..1
+recursiveFrom
0..1

FlowElement
VarSlot

AuxSlot

Expression

ContextNode

Value

Frame

0..1+caller 0..1

0..1+pc 0..1 0..n+locals 0..n

0..n

+auxiliaries

0..n

0..1

+actualPar

0..1

0..1+calledFrom 0..1

1

+executes

1

0..1+init 0..1
0..1

+self

0..1

Fig. 8. Frame Graph meta-model

196 H. Kastenberg, A. Kleppe, and A. Rensink

Fig. 9. Fragment of an Execution Graph (at Line 7 of Listing 1)

4.2 Operational Semantics

We now discuss the graph transformation rules that define the dynamic seman-
tics of TAAL. The rules essentially define the effect of the individual statements
and expressions of the program in terms of the Value Graph and Frame Graph.
For instance, object creation, and assignment to attributes are reflected in the
Value Graph, whereas method invocation is reflected mainly in the Frame Graph.

This means that, when we apply the resulting transformation system to the
start graph of a given program (being the Program Graph resulting from the
Flow Graph construction described in the previous section), each rule application
corresponds to the execution of a small step in the program. As an example,
Fig. 10 shows the resulting transition system for the example program of Listing 1
in the form of another graph, where the edge labels are rule names. In Sect. 5
we describe the tools used to generate this view.

The complete set of simulation rules for TAAL is too large to include in
this paper. They can be found in [13]. Fig. 11 shows a few example rules. The
complete set of rules can be divided into three categories: flow element execution
rules, object creation rules, and method lookup rules. We believe these three
categories to be invariant with respect to the chosen language.

Fig. 10. Transition system of the simulation of Listing 1

Defining Object-Oriented Execution Semantics 197

(i) AssignStat−attribute (ii) VarCallExp−attribute

(iii) CreateExp (iv) ObjectType−return

Fig. 11. Example simulation rules

Flow Element Execution. This category consists of a small number of rules
(usually one, in some cases two) per kind of FlowElement. These rules describe
the essential function of that particular FlowElement. They are always triggered
by the fact that the pc-edge from a Frame node (in the Frame Graph) arrives at
an instance of the relevant flow element type (in the Program Graph), and they
also always adapt the pc-edge to point to a next statement in the Flow Graph.
We illustrate this on two examples.

VarCallExp. A VarCallExp is an expression that retrieves the value of a variable.
We distinguish two cases: the variable may be an instance variable or attribute
(signalled by the fact that the VarCallExp-node has a source) or a local vari-
able or parameter. The first of these is illustrated in Fig. 11 (ii). In either case
the referredVar (in the Program Graph) identifies a unique VarSlot (in the Value
Graph); execution of the VarCallExp-rule then consists of creating a fresh AuxS-
lot for the expression and assigning the current value of the referredVar to it.
Furthermore, the pc-pointer is moved forward.

AssignStat. The effect of an AssignStat is to make a variable (modelled by a VarSlot)
point to a pre-computed value - the rightHandSide of the assignment. Just as for the
VarCallExp-rule, we have to distinguish the cases of instance and local variables;
the former is illustrated in Fig. 11 (i). In either case, the assignedVar (possibly
together with the AuxSlot at the source-referenced Expression) uniquely identifies
a VarSlot-instance; this receives the value of the AuxSlot at the rightHandSide. The
AuxSlot-instances involved are subsequently discarded.

198 H. Kastenberg, A. Kleppe, and A. Rensink

Object Creation. This consists of allocating and initializing nodes for a new ob-
ject and its instance variables. In most object-oriented languages, allocation and
initialization are done in two different passes, of which the first assigns a default
initial value to all fields. In TAAL, we have taken a more simplistic approach: all
attributes have an initializing expression. This means we can construct locations
for the variables and simultaneously assign initial values to those locations, pro-
vided we take care that this process starts at the top of the inheritance hierarchy.
This results in the following steps:

Allocation: The actual object creation occurs when control reaches a
CreateExp-instance. A ConstrFrame and an ObjectVal are created straight away.
The ObjectVal is referenced through self from the ConstrFrame. Moreover, the
fresh ConstrFrame has an init-pointer to the ObjectType, to indicate the fact that
we are initializing an instance of this type. This is shown as rule CreateExp in
Fig. 11 (iii).

Initialization: A ConstrFrame-instance with an init-edge to an ObjectType is
treated in either of two ways, depending on whether the ObjectType has a super
type. If it has a super type, then a new ConstrFrame is created recursively for
that, but with the same self. If it has no super type, then execution is started, by
replacing the init-edge with a pc-edge pointing to the first FlowElement reachable
from the ObjectType. The subsequent simulation rules will compute initial values
and assign them to newly instantiated AuxSlot-instances for the ObjectVal.

Termination: A ConstrFrame terminates when the pc-edge has arrived (back)
at the ObjectType. The frame is discarded, and a pc-edge is (re)created at the
caller frame. Just as for initialization, there is a case distinction, depending on
whether the current frame was called recursively from a sub-type or directly
from a CreateExp. The latter case is depicted in Fig. 11 (iv): the ConstrFrame
is discarded and the underlying object, pointed to by self, is returned to the
caller, where it is assigned to an AuxSlot-instance (also created freshly) storing
the value at the CreateExp-node.

Method Lookup. This is a phase that occurs each time after a method is called
(through an OperCallExp). The call itself creates a new OperFrame (in the Frame
Graph). However, the call (in the Program Graph) only references the signature
of the method to be executed; a matching method implementation (OperImpl)
must be looked up in the server object’s self-type. When it is found, the argu-
ments (in the Value Graph) are transferred to that OperImpl’s formal parameters.
Finally, the new OperFrame is started by creating a pc-edge for it, after which
the flow element execution rules take over.

5 Conclusion

The work described in this paper shows a complete example of how program-
ming languages can be defined using graphs and graph transformation rules. The
language definition of TAAL includes all necessary parts of a language defini-
tion: (abstract) syntax and semantics, which have been defined using a single

Defining Object-Oriented Execution Semantics 199

formalism. Although other work has been presented that uses graphs and graph
transformation rules (e.g. [6]) for (parts of) language definitions, none of these
reaches the same level of completeness. For instance, the semantics specification
in [27] merely includes the static semantics, while our work encompasses execu-
tion semantics as well as static semantics. Independently, Hausmann and Engels
[11, 8] have developed a similar approach to the definition of language semantics.
Both their and our work is based on earlier work by the pUML group [15, 5].

The use of graph transformation rules to specify the semantic rules offers a
number of advantages. First, the visual representation of the graph transfor-
mation rules provides an intuitive understanding of the semantics. Second, the
graph transformation rules offer the possibility to include in one mathematical
structure, the graph, information on both the run-time system and the program
that is being executed. Traditional approaches to operational semantics (e.g.
[1, 26, 19, 4, 12, 2, 7]) often need to revert to inclusion of run-time concepts in the
syntax definition, e.g. inclusion of the concept of location to indicate a value
that may possibly change over time. This seems to be an artificial manner of
integrating parts of the language definition, i.e. of the abstract syntax and the
semantic domain, that become much more natural in a graph representation. Fi-
nally, in graph transformation rules, context information can be included more
naturally and uniformly than for example when using SOS-rules [26].

The example language that we have chosen comprises some of the fundamental
aspects of object-oriented programming languages, like inheritance, including dy-
namic method look-up, and object creation. The structure of our solution makes
us confident that the approach can be extended to real-life software languages
in the object-oriented paradigm:

– All the transformation steps (parsing, static analysis, flow generation and
simulation) are structured according to the concepts in the abstract syntax.
This lends a modularity to the definitions that is independent of the language
being defined.

– The structure of the Flow and Execution Graphs is generic, in the sense
that the elements therein are not specific to TAAL; rather, they capture the
essential aspects of imperative, object-oriented languages.

Work that is closely related to ours is by Corradini et al. [6]. They use graph
transformations to formalize the semantics of a realistic programming language:
they address a fairly large fragment of Java. Technically, the difference is that
they interpret method invocation unfolding — meaning that the program graph
changes dynamically. This obviates the need for the frame graph, at the price of
having program-dependent rules (namely, one per method implementation).

Another difference is that they provide no tool support, and in that sense
theirs is a more theoretical exercise. Another, less directly related source of
research is on defining dynamic semantics of (UML-type) design models, where
also the idea of using graph transformations has been proposed, e.g. in [8, 16, 25].
Furthermore, in Engels et al. [8] ideas are presented on how to use collaboration
diagrams, interpreted as graph transformation rules, for defining SL semantics.

200 H. Kastenberg, A. Kleppe, and A. Rensink

A final aspect of the work reported here is that we have not only developed
the TAAL language definition but supporting tools as well. This means that we
can actually compile and simulate any TAAL-program and store the resulting
transition system so, for instance, all the ingredients for verification are there.
Both tool sets as well as the full sets of transformation rules defined the flow
generation and simulation phases are available for downloading [14, 21].

An area of further research will be to lift the approach outlined here to a more
general level, thus creating a meta language to define software languages, includ-
ing their semantics. A first step has already been reported in [24], in which rules
are specified for building a control flow graph for any imperative object-oriented
language. This will give rise to a method for defining the semantics of SLs, which
fill the gap currently present in MDA, as pointed out in the introduction. We also
intend to investigate whether this approach is applicable for non OO-languages
as well. Currently we are working on implementing model checking techniques
for verifying object-oriented programs where states are represented as graphs
and execution steps as graph transformations.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. Inductive proof
outlines for monitors in java. In E. Najm, U. Nestmann, and P. Stevens, editors,
Formal Methods for Open Object-based Distributed Systems, volume 2884 of Lecture
Notes in Computer Science, pages 155–169. Springer, 2003.

3. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

4. K. Bruce, J. Crabtree, and G. Kanapathy. An operational semantics for TOOPLE:
A statically-typed object-oriented programming language. In S. Brookes, M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations of
Programming Semantics, volume 802 of Lecture Notes in Computer Science, pages
603–626. Springer, 1994.

5. T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A feasibility study in
rearchitecting UML as a family of languages using a precise OO meta-modelling
approach, September 2000. Version 1.0 available from www.puml.org.

6. A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating Java code to graph
transformation systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, Proceedings of the 2nd International Conference on Graph Transforma-
tions (ICGT’04), volume 3256 of Lecture Notes in Computer Science, pages 383–398.
Springer, 2004.

7. F. S. de Boer and C. Pierik. How to cook a complete hoare logic for your pet
OO language. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Formal Methods for Components and Objects (FMCO’04), volume 3188 of
Lecture Notes in Computer Science, pages 111–133. Springer, 2004.

8. G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In A. Evans, S. Kent, and B. Selic, editors, Proceedings of the Third International
Conference on the Unified Modelling Language (UML2000), volume 1939 of Lecture
Notes in Computer Science, pages 323–337. Springer, 2000.

Defining Object-Oriented Execution Semantics 201

9. N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous & Practical Ap-
proach. International Thomsen Publishing Inc., 2nd edition, 1997.

10. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3-4):287–313, 1996.

11. J. H. Hausmann. Dynamic Meta Modeling, A Semantics Description technique for
Visual Modeling Languages. PhD thesis, University of Paderborn, 2006.

12. im B. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe poly-
morphic object-oriented language. ACM Trans. Program. Lang. Syst., 25(2):225–
290, 2003.

13. H. Kastenberg, A. Kleppe, and A. Rensink. Engineering object-oriented seman-
tics using graph transformations. CTIT Technical Report 06-12, University of
Twente, 2006. Available at http://www.cs.utwente.nl/∼kastenbe/papers/
taal.pdf.

14. A. Kleppe. Taal eclipse plugin, 2006. Available from http://www.klasse.nl/
english/research/taal-install.html.

15. A. Kleppe and J. Warmer. Unification of static and dynamic semantics of UML, a
study in redefining the semantics of the UML using the pUML OO meta mod-
elling approach. Technical report, Klasse Objecten, July 2001. Available at
http://www.klasse.nl/papers/unification-report.pdf.

16. S. Kuske, M. Gogolla, R. Kollmann, and H.-J. Kreowski. An integrated semantics
for UML class, object and state diagrams based on graph transformation. In
M. J. Butler, L. Petre, and K. Sere, editors, Proceedings of the 3rd International
Conference on Integrated Formal Methods (IFM’02), volume 2335 of Lecture Notes
in Computer Science, pages 11–28. Springer, 2002.

17. OMG. MDA guide version 1.0.1, June 2003. Available from www.omg.org.
18. OMG. UML 2.0 OCL specification, October 2003. Available from www.omg.org.
19. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
20. A. Rensink. The GROOVE Simulator: A tool for state space generation. In J. L.

Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE’03), volume 3062 of Lecture Notes in Com-
puter Science, pages 479–485. Springer, 2004.

21. A. Rensink. The Groove Tool Set, 2005. Available from http://groove.sf.net.
22. A. Rensink. The joys of graph transformation. Nieuwsbrief van de Nederlandse

Vereniging voor Theoretische Informatica, 9, 2005.
23. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, volume I: Foundations. World Scientific, 1997.
24. R. M. Smelik. Specification and construction of control flow semantics. Master’s

thesis, University of Twente, January 2006.
25. D. Varró. A formal semantics of UML statecharts by model transition systems.

In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings
of the 1st International Conference on Graph Transformation (ICGT’02), volume
2505 of Lecture Notes in Computer Science, pages 378–392. Springer, 2002.

26. G. Winskel. The formal semantics of programming languages: an introduction.
MIT Press, 1993.

27. K.-B. Zhang, M. A. Orgun, and K. Zhang. Visual language semantics specification
in the vispro system. In J. S. Jin, P. Eades, D. D. Feng, and H. Yan, editors, VIP,
volume 22 of CRPIT. Australian Computer Society, 2002.

Type-Safe Runtime Class Upgrades in Creol

Ingrid Chieh Yu, Einar Broch Johnsen, and Olaf Owe

Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, NO-0316 Oslo, Norway

{ingridcy, einarj, olaf}@ifi.uio.no

Abstract. Modern applications distributed across networks such as the
Internet may need to evolve without compromising application availabil-
ity. Object systems are well suited for runtime update, as encapsulation
clearly separates internal structure and external services. This paper con-
siders a type-safe asynchronous mechanism for dynamic class upgrade,
allowing class hierarchies to be updated in such a way that the existing
objects of the upgraded class and of its subclasses gradually evolve at
runtime. New external services may be introduced in classes and old ser-
vices may be reprogrammed while static type checking ensures that asyn-
chronous class updates maintain type safety. A formalization is shown
in the Creol language which, addressing distributed and object-oriented
systems, provides a natural framework for dynamic upgrades.

1 Introduction

Long-lived distributed applications with high availability requirements need the
ability to adapt to new requirements that arise over time without compro-
mising application availability. These requirements include bugfixes but also
new or improved features. Examples of such applications are found in financial
transaction processes, aeronautics and space missions, and mobile and Internet
applications. In these examples, updates must be applied at runtime. Early ap-
proaches to software updates [4, 12, 16] do not address the issue of continuous
availability, but runtime reconfiguration and upgrade have recently attracted at-
tention [3,2,9,10,11,19,17,1,5,21]. In large distributed systems runtime updates
need to be applied in an asynchronous and modular way, and propagate gradu-
ally through the distributed system. An appropriate update system should [1,21]:
propagate updates automatically, provide a means to control when components
may be upgraded, and ensure the availability of system services during the up-
grade process.

This paper considers a type-safe mechanism for distributed runtime updates
in Creol [13], a formally defined object-oriented language which specifically tar-
gets open distributed systems. We consider updates in the form of runtime up-
grades of existing classes combined with runtime additions of new interfaces and
new classes. Upgrading a class affects all future and existing object instances of
the class and its subclasses. As runtime upgrades are handled by asynchronous
messages, allowing message overtaking, dependencies between different upgrades
could violate type safety. Extending previous work [14], this paper introduces a

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 202–217, 2006.
c© IFIP International Federation for Information Processing 2006

Type-Safe Runtime Class Upgrades in Creol 203

type system for class upgrades which derives the upgrade dependencies of each
upgrade. These dependencies enforce an ordering of the upgrades in the runtime
system, formalized in rewriting logic [18], which ensures that the application of
the distributed upgrades is type-safe. Consequently, runtime class upgrades will
not introduce type errors. The upgrade mechanism proposed in this paper allows
new interfaces to be added to classes at runtime. This way upgraded classes may
provide new external services. The following simple example illustrates depen-
dencies between several updates.

Motivating example. We adopt a separation of concerns between external ser-
vice specifications, given as interfaces, and implementation code, organized in
classes. Object pointers are typed by interfaces while objects are instances of
classes. A type system is used to ensure that methods invoked on object point-
ers are supported by the objects. Consider a simple scenario with three classes
C1, C2, and C3, where C3 inherits C2 (the comment V:1 means version 1 of a
class):

class C1 --- V:1, U:0 class C2 --- V:1, U:0 class C3 --- V:1, U:0
begin begin end inherits C2
op run() == n(); run() begin end
op n() == skip
end

The example sketch is given in Creol, U:0 comments that a class has not (yet)
been upgraded. Here, C1 objects are active as the run method is activated at
object creation, with a nonterminating behavior consisting of repeated local calls
to a method n. The external functionality of each class is given by its interfaces.
None are given here, so in this example only internal calls are possible in C1.

By dynamically upgrading the class C2 with a new method m, this method
will become available via objects of classes C2 and its subclass C3. However,
after the update the new method is only known internally in these classes. In
order to export the new functionality, we dynamically add a new interface I
providing a method m with an appropriate signature, after which m may be
invoked on pointers typed by I. If we can type check that C3 implements I, it
is type-safe to bind a pointer typed by I to an instance of C3 and invoke the
new method m on this object. This may be achieved by dynamically redefining
method n in class C1 to create an appropriately typed instance of C3 and invoke
m on this instance, for instance by the code var x : I;x := new C3();x.m().
These dynamic updates may be realized by four update messages added to the
running system: introducing I, upgrading C1 by the redefinition of n, C2 by a
new method m, and C3 by the new interface I. After successful upgrades (U:1),
the following classes replace the previous runtime class definitions:

class C1 --- V:2, U:1 class C2 --- V:2, U:1 class C3 --- V:3, U:1
begin begin implements I
op run() == n(); run() op m() == Body inherits C2
op n() == var x : I; end begin end

x := new C3();x.m()
end

204 I.C. Yu, E.B. Johnsen, and O. Owe

Furthermore, the active behavior of existing instances of C1 now create instances
of C3 on which the new method m is invoked.

A type-safe introduction of these upgrades in a distributed system requires a
combination of type checking and careful timing at runtime. In particular, the
redefinition of method n has an immediate effect on any instance of C1. In order
to avoid errors, this upgrade cannot be applied before C3 implements the new
interface I. However, the addition of the new interface requires the presence of
method m, which in turn requires that the application of the upgrade of C2 has
already occurred. In fact, C3 has been upgraded twice, once directly and once
indirectly through the upgrade of C2. This paper formalizes an asynchronous
update mechanism which handles these dependencies, maintaining runtime type
safety throughout the upgrade process.

Paper overview. Sect. 2 introduces behavioral interfaces, Sect. 3 summarizes
Creol, Sect. 4 presents Creol’s type system, and Sect. 5 presents the dynamic
class construct. Sect. 6 discusses related work and Sect. 7 concludes the paper.

2 Behavioral Interfaces

An object may assume different roles, depending on the context of interaction,
which are captured by specifications of aspects of its externally observable be-
havior. A behavioral interface consists of a set of method names with signatures
and semantic constraints on the use of these methods. In this paper we restrict
semantic constraints to cointerface requirements, explained as follows: For active
objects it may be desirable to restrict access to the methods in an interface to
calling objects of a particular cointerface. This way the called object may invoke
methods of the caller and not only passively complete invocations of its own
methods, thus providing support for callback. Mutual dependency is specified if
two interfaces have each other as cointerface. Let Any be the superinterface of
all interfaces; Any is used as cointerface if no callback knowledge is required.

Object references (pointers) are typed by behavioral interfaces. References
typed by different interfaces may refer to the same object identifier. A class
implements an interface if its object instances provide the behavior described by
the interface. A class may implement several interfaces and different classes may
implement the same interface. Reasoning control is ensured by interface-level
substitutability: a reference typed by an interface I may be replaced by another
reference typed by I or by a subinterface of I. This substitutability is reflected
in the executable language by the fact that late binding applies to all external
method calls, as the runtime class of the object need not be statically known.

Let τB be a set of basic data type names and τI a set of interface names,
such that τB ∩ τI = ∅. Let τ denote the set of all types; τB ⊆ τ and τI ⊆ τ .
Let I and J be typical elements of τI , and T of τ . We assume that τB includes
standard types such as Booleans and natural numbers. Type schemes such as
parametrized data types may be applied to types in τ to form new types in τ ,
Set[T] and List[T] are included among the type schemes. To conveniently organize
object viewpoints, interfaces may be structured in an inheritance hierarchy.

Type-Safe Runtime Class Upgrades in Creol 205

Definition 1. An interface is denoted by a term int (Inh,Mtd) of type I, where
Inh is a list of (inherited) interfaces and Mtd is a set of method declarations
mdecl (Nm,Co, In,Out), where Nm is a method name, Co is a cointerface, and
In and Out are lists of parameter types.

Dot notation is used to access the elements of tuples such as methods and inter-
faces; e.g., int (Is,M).Mtd = M . The empty list is denoted ε. The name Any ∈ τI
is reserved for int (ε, ∅), and the name Internal ∈ τI is reserved for type checking
purposes (see Sect. 3). If I inherits J , the methods of both I and J must be
available in any class that implements I. We consider a nominal subtype rela-
tion [20] for interfaces. Two interfaces with the same set of methods may be part
of different subtype relationships.

3 Creol: A Language for Distributed Concurrent Objects

Creol is a high-level object-oriented language targeting open distributed systems
by combining interface types and concurrent objects with asynchronous method
calls, and by combining active and reactive object behavior [15,13]. In this paper
blocking and nonblocking (suspending) method calls are considered, although the
results of the paper apply to the full language. An object has its own processor
which evaluates local processes. Processes result from method activations. Active
behavior is initiated by the special run method, activated at object creation, and
interleaved with reactive behavior by means of suspension. Due to suspension,
the values of object variables may depend on the nondeterministic interleaving of
processes, so local process variables supplement the object variables and include
the formal parameters. An object may contain several (pending) activations of
a method, possibly with different values for local variables.

Objects only interact through asynchronous method calls. Calls can always be
emitted, as a receiving object cannot block communication. Method overtaking
is allowed: if methods offered by an object are invoked in one order, the object
may start execution of the method activations in another order. A blocking call
x.m(e;v) immediately blocks the processor while waiting for a reply. A nonblock-
ing call await x.m(e;v) releases the processor while waiting for a reply, allowing
other processes to execute. When the reply arrives, the suspended process be-
comes enabled and evaluation may resume. This approach provides flexibility in
the distributed setting: suspended processes or new method activations may be
evaluated while waiting. If the called object never replies, deadlock is avoided
as other activity in the object is possible. However, when the reply arrives, the
continuation of the process must compete with other pending and enabled pro-
cesses. After processor release, any enabled pending process may be selected for
evaluation. When x evaluates to self, the call is said to be local. Internal calls
are not prefixed by an object identifier and are identified syntactically, otherwise
the call is external. All internal calls are here late bound.

The language distinguishes data, typed by data types, and objects, typed by
interfaces. We assume given a strongly typed functional language of well-typed
expressions e ∈ Expr without side effects, including two subtypes ObjExpr and

206 I.C. Yu, E.B. Johnsen, and O. Owe

CL ::= [class C [(Vdecl)]? [implements [I]+;]? [inherits [C[(e)]?]+;]?

begin [var Vdecl]? [[with I]? Methods]∗ end]∗

Methods ::= [op m ([in Vdecl]? [out Vdecl]?) == [var Vdecl;]? s]+

Vdecl ::= [v : T]+;

Fig. 1. An outline of the language syntax for classes, excluding expressions e, expression
lists e, and statement lists s. The meta notation [. . .]? denotes optional parts, [. . .]∗

repetition zero or more times, and [. . .]+d non-empty repetition with d as delimiter.

BoolExpr whose expressions reduce to object references (typed by interface) and
Booleans, respectively. There are no constructors or field access functions for
terms in ObjExpr, but variables bound to object references may be compared by
an equality function. Let ΓF be a typing environment which includes all relevant
type information for the constants and functions of the functional language,
and let Γ extend ΓF with variable declarations. Then Γ �f e : T denotes that
e has type T in Γ . It is assumed that expressions are type-sound : well-typed
expressions remain well-typed during evaluation. If Γ �f e : T and e reduces to
e′, then Γ �f e′ : T ′ such that T ′ . T .

Object-oriented features extend the functional language. Class definitions in-
clude declarations of persistent state variables and method definitions.

Definition 2. A class is denoted by a term class (Par,Upg, Imp, Inh,Var,Mtd),
where Par is a list of typed program variables, Upg the current upgrade number,
Imp a list of interface names, Inh a list of class names, defining class inheritance,
Var a list of typed program variables (possibly with initial expressions), and Mtd
a set of methods mtd (Nm,Co, In,Out,Body) where Nm is a method name, Co
an interface, In and Out lists of variable declarations, and Body a pair of variable
declarations Vdecl and statements s.

The Upg attribute is not a part of the Creol syntax and cannot be altered by
programmers. For internal methods, the cointerface field is Internal. The field
Imp represents interfaces supported by this class. The typing of remote method
calls in a class C relies on the fact that the calling object supports the interfaces
of C, and these are used to check any cointerface requirements of the calls.

Let τC denote the set of class names, with typical element C, and C the set
of class terms. An abstract representation of a class may be given following the
BNF syntax of Figure 1. Method declarations in classes consist of local variable
declarations and a list of program statements (see Figure 2). Assignment to
local and object variables is expressed as v := e for a disjoint list of program
variables v and an expression list e, of matching types. In-parameters as well as
the pseudo-variables self, for self reference, and caller are read-only variables.

Due to the interface typing of object variables, the actual class of the receiver
of an external call is not statically known. Consequently, external calls are late
bound. Let the nominal subtype relation . be a reflexive partial ordering on
types, including interfaces. The nominal subtype relation restricts a structural
subtype relation which ensures substitutability; If T . T ′ then any value of T
may masquerade as a value of T ′ [20]. For product types R and R′, R . R′

Type-Safe Runtime Class Upgrades in Creol 207

Syntactic categories. Definitions.
s in Stm v in Var
m in Mtd p in MtdCall
e in Expr x in ObjExpr

p ::= m | x.m
s ::= s | s; s
s ::= skip | v := e | v := new C(e) | p(e;v) | await p(e; v)

Fig. 2. Program statements in method definitions, with typical terms for each category.
Capitalized terms such as e denote lists of the given syntactic categories.

is the point-wise extension of the subtype relation. To explain the typing and
binding of methods, . is extended to function spaces A→ B, where A and B are
(possibly empty) product types: A → B . A′ → B′ ⇔ A′ . A ∧ B . B′. The
static analysis of an internal call m(e;v) or await m(e;v) will assign unique
types to the in- and out-parameters depending on the textual context, say e : Te
and v : Tv. The call is type-correct if there is a method declaration m : T1 → T2
in the class C such that T1 → T2 . Te → Tv. An external call o.m(e;v) or
await o.m(e;v) to an object o of interface I is type-correct if it can be bound
to a method declaration in I in a similar way. The static analysis of a class
will verify that it implements its declared interfaces. Assuming that any object
variable typed by I is an instance of a class implementing I, method binding at
runtime will succeed regardless of the dynamically identified class of the object.

4 Typing

The typing environment Γ in Creol’s nominal type system is a mapping family:
ΓI maps interface names to interfaces, ΓC class names to classes, and Γv pro-
gram variable names to types. Without class upgrades, ΓI and ΓC correspond
to static tables. Declarations may only update Γv, and program statements may
not update Γv. For the purposes of dynamic updates, a dependency mapping Γd

captures the dependencies that a class has to different classes in the program.

Definition 3. The dependency mapping Γd : τC × Nat → Set[τC × Nat] maps
pairs of class names and upgrade numbers to sets of such pairs.

Each upgrade of a class C is uniquely identified by a pair 〈C, u〉. Thus, elements
in Γd(〈C, u〉) represent classes on which upgrade u of class C depends, and
structural requirements to these classes. At runtime Γd helps to monitor whether
these structural requirements are fulfilled, and to enforce an ordering of local
updates obeying the dependency requirements.

The type analysis of a syntactic construct D is formalized by a deductive
system for judgments Γ � D 〈Δ〉, where Γ is the typing environment and Δ the
update of the typing environment. After analysis of D, the typing environment
becomes Γ overridden by Δ, denoted Γ +Δ. Sequential composition has the rule

(SEQ)
Γ � D 〈Δ〉 Γ + Δ � D′ 〈Δ′〉

Γ � D; D′ 〈Δ + Δ′〉

where + is an associative operator on mappings with the identity element ∅. We
abbreviate Γ � D 〈∅〉 to Γ � D. Mapping families are now formally defined.

208 I.C. Yu, E.B. Johnsen, and O. Owe

Definition 4. Let n be a name, d a declaration, i ∈ I a mapping index, and
[n �→id] the binding of n to d indexed by i. A mapping family Γ is built from
the empty mapping family ∅ and indexed bindings by the constructor +. The
extraction of an indexed mapping Γi from Γ and application for the indexed
mapping Γi, are defined as follows

∅i = ε
(Γ + [n �→i′d])i = if i = i′ then Γi + [n �→id] else Γi

ε(n) = ⊥
(Γi + [n �→id])(n′) = if n = n′ then d else Γi(n′).

A class or interface declaration binds a name to a class or interface term, re-
spectively. Class and interface names need not be distinct. A program consists
of a list of interface and class declarations, represented by the mappings ΓI and
ΓC . For type checking a program, each interface and class term is type checked
based on these mappings (binding self to the class name in the second case).
The type rules are given in Figure 3 (omitting the rule for interfaces). To sim-
plify the exposition, some auxiliary functions are used to retrieve information
from the typing environment. The predicate matchpar verifies that the formal
and actual parameters of (inherited) classes match, given a list of classes and
a typing environment. The predicate matchext checks that an external invoca-
tion may be bound through the interface of the callee, based on the types of
actual parameter values and the possible cointerfaces of the caller. The function
matchint returns a list of classes in which an internal invocation may be bound
given a method, a list of classes, and a typing environment. This function is used
to check that a class provides method bodies for the method declarations of its
interfaces, and for type checking internal calls. The function InhAttr returns a
list of typed variables when given a list of classes and a typing environment, and
is used to extend the typing environment with inherited attributes.

The main type rules are now briefly explained. Programs are type checked
in the context of ΓF . Variable declarations extend the context used to type
check methods in rule (Class). Local variable declarations extend the typing
environment used to type check the program statements of a method in rule
(method). For object creation, (new) ensures that the class must implement
an interface which is a subtype of the declared interface of the object pointer.
For external calls x.m, (ext) checks that the interface of x offers a method m
with a cointerface implemented by the class of the caller. Consequently, remote
calls to self are allowed when the class implements an interface used as the
cointerface of the method in the current class. For internal calls m, (int) checks
that the method has cointerface Internal. For a variable occurring in a method
body, the pair consisting of the name of the class in which the variable is declared
and the upgrade number of this class, are added to the dependency mapping for
the method. Similarly, matching classes for internal calls and object creations
also extend the mapping. This way, the type system constructs a dependency
mapping which captures the dependencies a method has to different classes in
the program. This dependency mapping is exploited for system upgrades.

Type-Safe Runtime Class Upgrades in Creol 209

(PROG)
∀I ∈ τI · ΓI � ΓI(I) ∀C ∈ τC · ΓF + ΓI + ΓC + [self �→vC] � ΓC(C)

ΓF � ΓI , ΓC

(CLASS)

Γ � Par 〈Δ〉 Γ + Δ � InhAttr(Inh, ΓC), Var 〈Δ′〉
matchpar(Γ + Δ, Inh) ∀m ∈ Mtd · Γ + Δ + Δ′ � m 〈Δm〉

∀I ∈ Imp · ∀m ∈ ΓI(I).Mtd · matchint(m, Γv(self), Γ) �= ε

Γ � class (Par, Upg, Imp, Inh, Var, Mtd) 〈Δ + Δ′ +
⋃

m∈Mtd
Δm〉

(METHOD)
Γ � (caller : Co); In;Out;Body 〈Δ〉

Γ � mtd (Nm, Co, In, Out, Body) 〈Δd〉

(SKIP) Γ � skip (ASSIGN)
Γ �f e : T ′ T ′ � Γv(v)

Γ � v := e 〈[• �→dΓd(•) ∪ �v; e�]〉

(VAR)
v /∈ Γv T � Data
Γ � v : T 〈[v �→vT]〉 (NON-BL)

Γ � p(e;v) 〈Δ〉
Γ � await p(e;v) 〈Δ〉

(NEW)
Γ �f e : T T � type(ΓC(C).Par) ∃I ∈ ΓC(C).Imp · I � Γv(v)

Γ � v := new C(e) 〈[• �→dΓd(•) ∪ �v; e� ∪ {〈C, ΓC(C).Upg〉}]〉

(EXT)
Γ �f e : I Γ �f e : T matchext(m, T,v, I, Γv(self), Γ)

Γ � e.m(e;v) 〈[• �→dΓd(•) ∪ �e; v�]〉

(INT)
Γ �f e : T C′ ∈ matchint(mtd (m, Internal, T, Γv(v), ε), Γv(self), Γ)

Γ � m(e;v) 〈[• �→dΓd(•) ∪ �e;v� ∪ {〈C′, ΓC(C′).Upg〉}]〉

Fig. 3. The type system, where • acts as a placeholder for values of type 〈τC × Nat〉,
�e� returns a set of class names and upgrade numbers for the classes in which the
attributes in an expression list e are declared (relative to self in Γ), and type extracts
the types of a declaration list.

5 Dynamic Class Upgrades

New interfaces, new classes, and class upgrades may update the running system.
New interfaces and classes extend the system while class upgrades allow method
redefinition as well as extending the class with new attributes, methods, inter-
faces, and superclasses. Modifications should not compromise the type safety of
the running program; e.g., a method redefinition must preserve the signature so
the class consistently supports its interfaces. In an open distributed setting, up-
grades of classes and objects are not sequentialized; rather, upgrades propagate
asynchronously through the network causing objects of different versions to co-
exist. Consequently, the order in which upgrades happen at runtime may differ
from the order in which they were type checked. For upgrades with no syntactic
dependencies, this overtaking does not affect runtime type safety. If there are
syntactic dependencies between upgrades, the order of upgrades must respect
these dependencies. The following kinds of system updates are considered:

Definition 5. Systems are updated through the following operations:

– An interface addition is represented by a term new-interface(N,R), where
N is an interface name and R is an interface term.

210 I.C. Yu, E.B. Johnsen, and O. Owe

(NEW-INTERFACE)
N /∈ ΓI Γ + [N �→I R] � R

Γ � new-interface (N, R) 〈N �→I R〉

(NEW-CLASS)
N /∈ ΓC Γ + [self �→vN] + [N �→C R] � R 〈Δ〉

Γ � new-class (N, R) 〈[N �→C R] + [〈N, 1〉 �→d (Δd(•) \ {〈N, 0〉})]〉

(UP)

Γ � self : N ; ΓC(N) 〈Γ ′〉 ∀I ∈ Imp · I ∈ ΓI
Γ + Γ ′ � InhAttr(Inh, ΓC);Var 〈Δ〉 matchpar(Γ + Γ ′, Inh)
∀m ∈ Mtd · if m.Nm ∈ ΓC(N).Mtd

then Γ + Γ ′ + [N �→C upg(ΓC(N), 0, ε, Inh, ε, Mtd \ m)] + Δ �r m 〈Δm〉
else Γ + Γ ′ + [N �→C upg(ΓC(N), 0, ε, Inh, ε, Mtd)] + Δ � m 〈Δm〉 fi

∀I ∈ Imp · ∀m′ ∈ ΓI(I).Mtd · (matchint(m′, (N ; Inh), Γ) �= ε
∨(∃m ∈ Mtd(m′.Nm) · Sig(m) � Sig(m′)))

Γ � upd (N, Imp, Inh, Var, Mtd) 〈 [N �→C upg(ΓC(N), 1, Imp, Inh, Var, Mtd)]
+[〈N, ΓC(N).Upg + 1〉 �→d

⋃
m∈Mtd

Δm
d (•) ∪ {〈N, ΓC(N).Upg〉}]〉

(MTD-RDEF)

Sig(mdef) � Sig(ΓC(Γv(self)).Mtd(mdef.Nm))
Γ + [ΓC(Γv(self) �→C upg(ΓC(Γv(self), 0, ε, ε, ε, mdef)] � mdef 〈Δ〉

Γ �r mdef 〈Δd(•)〉

Fig. 4. The type system for class upgrades. Here, �r is used for type checking of
redefined methods, and Mtd(N) denotes the subset of methods in Mtd with name N .

– A class addition is represented by a term new-class(N,R), where N is a class
name and R is a class term.

– A class upgrade is represented by a term upd (N, Imp, Inh,Var,Mtd), where
N is the name of the class to be upgraded, Imp a list of interfaces, Inh a list
of classes, defining additional superclasses to be inherited, Var a list of typed
program variables, and Mtd a set of methods.

Type checking class upgrades results in dependency conditions which ensure
that system modifications do not violate the type safety of the running system.
Given an upgrade of a class C in a well-typed program P , an upgrade is type
checked based on the current typing environment Γ of P : the mappings in Γ are
modified by upgrades. Thus, the upgraded versions of classes as accumulated in
the environment resulting from a (successful) type checking, serve as the starting
point of future updates.

5.1 Type Checking System Updates

The rules to type check new interfaces and classes, class upgrades, and method
redefinitions are given in Figure 4. After type checking new interfaces and classes,
the typing environment is extended. Let Γ be the typing environment after
type checking a well-typed program P . An upgrade of a class C ∈ P is then
type checked in Γ ; i.e., Γ � upd (C, Imp, Inh,Var,Mtd) 〈Γ ′

d + ΓC′〉, where ΓC′ is
updates of the class representation in ΓC , computed by the auxiliary function
upg, and Γ ′

d is dependency requirements to classes in P for the upgrade of C
accumulated while type checking. The next update is type checked in Γ+Γ ′

d+ΓC′.

Type-Safe Runtime Class Upgrades in Creol 211

Definition 6. Let n be a natural number, i a list of interfaces, i’ a list of classes,
v a list of variables, and m a set of methods. The upgraded version of a class
resulting from a class update is defined by the upg function:

upg(class (Par,Upg, Imp, Inh,Var,Mtd), n, i, i’,v,m)
= class (Par,Upg + n, Imp; i, Inh; i’,Var;v,Mtd⊕m)

For class upgrades, the typing environment is reloaded for the upgrading class
before type checking the upgrade elements with the rule (Up). By adding new
interfaces, the class may provide new external services. For each new interface,
the type system requires that the class provides, either by inheritance, by local
declarations, or by the current upgrade, at least one type-correct method body
for each method in the interface. The function Sig takes a method as argument
and returns its signature, including the cointerface as an explicit in-parameter.
If new superclasses are added, the inheritance list in ΓC must be extended ac-
cordingly before type checking method bodies, as there might be internal calls
to methods in the new superclasses. This also applies to methods, due to calls
to methods introduced in the same upgrade. The function matchpar verifies
that the formal and actual parameters of new inherited classes match, and that
these classes are contained in the class mapping ΓC . Inherited attributes, as well
as new object variables, will further extend the typing environment. For each
method, the effect system of rule (Method) computes the dependencies asso-
ciated with the method body. Finally, after the type analysis of the upgrade
term of a class C, the ΓC mapping is upgraded and the dependency mapping for
the (ΓC(C).Upg + 1)’th upgrade of class C is constructed, which is a mapping
from 〈C, ΓC(C).Upg + 1〉 to the dependencies identified by the type analysis of
the upgrade term. For method redefinition, the rule (Mtd-rdef) ensures that
the redefined method still satisfies the interface requirements implemented by
the class. For purely internal methods, the new cointerface must be Internal.

At runtime, upgrades are asynchronous and may bypass each other. Hence,
well-typed upgrades may give runtime errors if not applied in a type-correct or-
der. We show that Γd, provided by the type system, helps to ensure that each
upgrade is applied at an appropriate time: If both a class C′ and a superclass
C are updated, then upgrades will be applied at runtime in the order decided
by the static type system, e.g., C is upgraded first if the upgrade of C′ de-
pends on the upgrade of C. However, upgrades that do not depend on each
other may be applied in parallel. It is therefore necessary that Γd(〈C, u〉) is in-
cluded as an argument to the runtime class upgrade 〈C, u〉. This is achieved by
translating the update term upd (C, Imp, Inh,Var,Mtd) into the runtime mes-
sage upgrade (C, Inh,Var,Mtd, Γd(〈C, ΓC(C).Upg〉)) where Γ is the environment
obtained from type checking the update term. Note that the implements-clause
is not needed after type checking.

5.2 Operational Semantics

The operational semantics of Creol is defined in rewriting logic (RL) [18] and is
executable on the RL system Maude [6]. A rewrite theory is a 4-tuple (Σ,E,L,R)

212 I.C. Yu, E.B. Johnsen, and O. Owe

where the signature Σ defines the function symbols, E defines equations between
terms, L is a set of labels, and R is a set of labeled rewrite rules. Rewrite rules
apply to terms of given sorts. Sorts are specified in (membership) equational logic
(Σ,E). When modeling computational systems, different system components
are typically modeled by terms of the different sorts defined in the equational
logic. The global state configuration is defined as a multiset of these terms. RL
extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations
which define the term language. From a computational viewpoint, a rewrite rule
t −→ t′ may be interpreted as a local transition rule allowing an instance of
the pattern t to evolve into the corresponding instance of the pattern t′. When
auxiliary functions are needed in the semantics, these are defined in equational
logic, and are evaluated in between the state transitions [18]. If rewrite rules
apply to non-overlapping sub-configurations, the transitions may be performed
in parallel. Consequently, concurrency is implicit in RL. Conditional rewrite rules
t −→ t′ if cond are allowed, where the condition cond can be formulated as a
conjunction of rewrites and equations that must hold for the main rule to apply.

A system configuration is a multiset combining Creol classes, objects, and mes-
sages. A Creol method call is reflected by a pair of messages, and object activity
is organized around a message queue which contains incoming messages and a
process queue which contains pending processes, i.e., remaining parts of method
activations. The associative list constructor is written as ‘;’, and the associative
and commutative constructors for multisets and sets by whitespace. Represent-
ing argument positions by “_”, terms 〈_ : Ob | Cl : _,Pr : _,PrQ : _,Lvar :
,Att :,Qu :_〉 denote Creol objects, where Ob is the object identifier, Cl the
class identifier which consists of a class name and version number, Pr the active
process code, PrQ and Qu are multisets of pending processes and incoming mes-
sages with unspecified queue orderings, respectively, and Lvar and Att the local
and object state, respectively. Terms 〈_ : Cl |Upd : _, Inh :_,Att :_,Mtds :_〉
represent Creol classes, where Cl is the class identifier, Upd the upgrade number,
Inh a list of class identifiers, Att a list of attributes, and Mtds a set of methods.
The class identifier for version n of class C is denoted C#n. The rules for the
static language constructs may be found in [13]. Focus here is on method binding
and dynamic class constructs, given in Figure 5.

An implicit inheritance graph is used to facilitate dynamic reconfiguration
mechanisms. The binding mechanism dynamically inspects the class hierarchy
in the system configuration. When an invocation message invoc(m, Sig, In) rep-
resenting a call to a method m is found in the message queue of an object o
of class C#n, where Sig is the method signature as provided by the caller and
In is the list of actual in-parameters, a message bind(o,m, Sig, In) to C#n is
generated. If m is defined locally in C#n with a matching signature, a process
with the declared method code and local state is returned in a bound message.
Otherwise, the bind message is retransmitted to the superclasses of C. Thus
the bind message is sent from a class to its superclasses, dynamically unfold-
ing the inheritance graph as far as needed and resulting in a bound message

Type-Safe Runtime Class Upgrades in Creol 213

〈o :Ob | Cl : C#n〉 〈o :Qu | Ev : q invoc(m,Sig, In)〉
−→ 〈o :Ob | Cl : C#n〉 〈o :Qu | Ev : q〉 (bind(o, m, Sig, In) to C#n)

bind(o, m, Sig, In) to ε −→ bound(none) to o
bind(o, m, Sig, In) to (C#n); i′ 〈C#n′ :Cl | Inh : i, Mtds : m〉

−→ if match(m, Sig,m) then (bound(get(m,m, In)) to o)
else (bind(o, m,Sig, In) to i; i′) fi

〈C#n :Cl | Inh : i, Mtds : m〉

(bound(w) to o) 〈o :Ob | PrQ : w〉 −→ 〈o :Ob | PrQ : w w〉

new-class(C, i,a,m, ((C′#n) r)) 〈C′#n′ :Cl | Upd : u〉
−→ new-class(C, i,a,m,r) 〈C′#n′ :Cl | Upd : u〉 if u ≥ n

new-class(C, i,a,m, ε) −→ 〈C#1:Cl | Upd : 1, Inh : i, Att : a, Mtds : m, Tok : 1〉

upgrade (C, i,a,m, ((C′#n) r)) 〈C′#n′ :Cl | Upd : u〉
−→ upgrade (C, i, a,m,r) 〈C′#n′ :Cl | Upd : u〉 if u ≥ n

upgrade (C, i′,a′,m′, ∅) 〈C#n :Cl | Upd : u, Inh : i, Att : a, Mtds : m, Tok : T 〉
−→ 〈C#(n + 1) :Cl | Upd : u + 1, Inh : i; i′, Att : a;a′, Mtds : m ⊕ m′, Tok : T 〉

〈C#n :Cl | Inh : i; (C′#n′); i′〉 〈C′#n′′ :Cl | 〉
= 〈C#(n + 1) :Cl | Inh : i; (C′#n′′); i′〉 〈C′#n′′ :Cl | 〉 if n′′ > n′

〈o :Ob | Cl : C#n, Pr : ε〉〈C#n′ :Cl | Att : a〉
= 〈o :Ob | Cl : C#n′, P r : ε〉 〈C#n′ :Cl | Att : a〉 (getAttr(o,a) to C) if n′ > n

(gotAttr(a′) to o) 〈o :Ob | Att : a〉 = 〈o :Ob | Att : a′〉

Fig. 5. A RL specification of method binding and dynamic class upgrades

returned to the object which generated the bind message. The auxiliary pred-
icate match(m, Sig,m) is true if m is declared in m with a signature Sig′ such
that Sig′ . Sig, and the function get fetches method m in the method set m of
the class and returns a process, resulting from the method activation. Values of
the actual in-parameters In are stored in the local process state. The process is
loaded into the internal process queue of the callee.

Class upgrades may be direct, or indirect through the upgrade of one of the
superclasses. In order to control the upgrade propagation, class representations
include an upgrade number and a version number ; i.e., counters which record the
number of times a class has been directly upgraded and (directly or indirectly)
modified, respectively. When a class is upgraded, both its upgrade and version
numbers are incremented. When a super-class of a class C is modified, the version
number of C is incremented but the upgrade number of C does not change.

A direct class upgrade of a class C is realized through the insertion of a
message upgrade (C, i,a,m, Γd(〈C, ΓC(C).Upg〉)) in the system configuration at
runtime, where i is an inheritance list, a a state, m a set of method definitions,
and Γd(〈C, ΓC(C).Upg〉) the set of upgrade requirements to classes in the run-
time system directly derived from Γ , found by type checking. The upgrade of a
class may not be applied unless these requirements are fulfilled. As upgrade is
asynchronous, several upgrades may be pending in the runtime system, and the

214 I.C. Yu, E.B. Johnsen, and O. Owe

current upgrade may need to wait. A message upgrade (C, i′,a′,m′, ε), with an
empty requirement set, does not have unverified dependencies, and the upgrade
may be applied to C. The rule for direct class upgrade uses an operator ⊕ to
overwrite the method set m with the new or redefined methods in m′. During
the upgrade, the upgrade and version numbers of the class are also incremented.

Indirect class upgrade propagates upgrade information to subclasses by means
of an equation, so instances of the subclasses will acquire new state attributes.
Note that by using an equation the indirect class upgrade happens in zero rewrite
steps, which corresponds to temporarily locking the upgraded class.

The upgrade of object instances must ensure that new attributes are acquired
before new code which may rely on new class attributes is evaluated. New object
instances automatically get the new class attributes. However, the upgrade of
existing object instances of the class must be closely controlled. Each time an ob-
ject needs to evaluate a method, it requests the code associated with this method
name. Problems may arise when executing new or redefined methods which rely
on new attributes that are not presently available in the object. With recursive or
nonterminating processes, objects cannot generally be expected to reach a state
without pending processes, even if the loading of processes corresponding to new
method calls from the environment is postponed as in [7, 1]. Consequently, it is
too restrictive to wait for the completion of all pending methods before applying
an upgrade. However, objects may reach quiescent states when the processor has
been released and before any pending process has been activated. Any object
which does not deadlock will eventually reach a quiescent state. In particular
nonterminating activity is implemented by means of recursion, which ensures
at least one quiescent state in each cycle. In the case of process termination or
an inner suspension point, Pr is empty. The rule for object upgrade applies to
quiescent states. Exploiting the implicit inheritance graph, attribute upgrade is
handled by a message getAttr, similar to bind, which recursively extends the
object state a and results in a message gotAttr(a′). The new object state a′

finally replaces a. The use of equations corresponds to locking the object.
The described runtime mechanism allows the upgrade of active objects. At-

tributes are collected at upgrade time while code is loaded “on demand”. A class
may be upgraded several times before the object reaches a quiescent state, so the
object may have missed some upgrades. However a single state upgrade suffices
to ensure that the object, once upgraded, is a complete instance of the present
version of its class. The upgrade mechanism ensures that an object upgrade has
occurred before new code is evaluated.

5.3 Type-Safe Execution with Dynamic Class Upgrades

The problem of type-safe execution of programs is now addressed. We prove that
errors such as method-not-understood do not occur at runtime, even with the
proposed dynamic class construct. A type soundness theorem for Creol with-
out dynamic classes was shown in [15]: Runtime type errors do not occur for
well-typed programs. The theorem implies that runtime assignments to program
variables, object creation, and method invocations are type-correct. The proof

Type-Safe Runtime Class Upgrades in Creol 215

is by induction over the length of the execution sequence as given by the op-
erational semantics. However, dynamic upgrades as considered in this paper
introduce runtime changes as the state adapts to the upgrades. By reasoning
about the type system and operational semantics, the following properties are
proved for the class upgrade mechanism of this paper:

Lemma 1. A well-typed class upgrade does not affect the execution of code of
existing processes in an object.

Lemma 2. The execution of a method activation from a new version of an
object’s class will not begin before the object’s state is updated.

Lemma 3. Let Γ be the typing environment for a well-typed program after a
series of upgrades, including the upgrade 〈C, u〉. The upgrade 〈C, u〉 is applicable
iff the runtime structure satisfies Γd(〈C, u〉).

Lemma 4. The execution of processes introduced in a well-typed upgrade will
not cause runtime type errors.

Lemma 4 follows from Lemmas 2 and 3. Lemmas 1 and 4 show that variable as-
signments, object creation, and method invocations are type-correct when classes
are upgraded, for old and new processes, respectively. A type soundness property
for Creol with class upgrades can now be proved by induction over the length
of execution sequences, extending the proof for the language without dynamic
classes. Lemmas 1 and 4 are used for the application of class upgrades:

Theorem 1 (Type soundness). Well-typed upgrades do not introduce runtime
type errors in well-typed programs.

6 Related Work

Availability during reconfiguration is an essential feature of many modern dis-
tributed applications. Dynamic or online system upgrade considers how run-
ning systems may evolve. Recently, several authors have investigated type-safe
mechanisms for runtime upgrade of imperative [22], functional [3], and object-
oriented [8] languages. These approaches consider the upgrade of single type
declarations, procedures, objects, or components in the sequential setting. Re-
classification in Fickle [8] is based on a type system which guarantees type safety
when an object changes its class. Fickle has been extended to multithreading [7],
but restrictions to runtime reclassification are needed; e.g., an object with a non-
terminating (recursive) method will not be reclassified.

Version control systems aim at a more modular upgrade support. Some ap-
proaches allow multiple module versions to coexist after an upgrade [3,2,9,10,11],
while others only keep the last version by doing a global update or “hot-swapping”
[19, 17, 1, 5]. The approaches also differ in their treatment of active behavior,
which may be disallowed [19, 17, 10, 5], delayed [7, 1], or supported [22, 11]. Ap-
proaches based on global update mostly disallow upgrades of active modules. An

216 I.C. Yu, E.B. Johnsen, and O. Owe

upgrade system for type declarations and procedures in active code is proposed
in [22] for (sequential) C. Type-safe updates occur at annotated program points
found by the type system. However, the approach is synchronous as upgrades
which cannot be applied immediately will fail.

Dynamic class constructs support modular upgrades. The approach of Hjálm-
týsson and Gray [11] for C++, based on proxy classes which link to the actual
classes (reference indirection), supports multiple versions of each class. Existing
instances are not upgraded, so the activity in existing objects is uninterrupted.
Existing approaches for Java, either using proxies [19] or modifying the Java
virtual machine [17], are based on global upgrade and are not applicable to active
objects. In [19], each class version supports the same interfaces. New interfaces
can only be introduced by adding new classes. In [5] the ordering of upgrades
are serialized and in [17] invalid upgrades are handled by exceptions.

Automatic upgrade based on lazy global update is addressed in [1] for dis-
tributed objects and in [5] for persistent object stores. Here the object instances
of upgraded classes are upgraded, but inheritance and (nonterminating) active
code are not addressed, which limits the effect of class upgrade. Our approach
supports multiple inheritance, but restricts upgrades to addition and redefini-
tion and may therefore avoid these limitations. Only one version of an upgraded
class is kept in the system but active objects may still be upgraded. Upgrade
is asynchronous and distributed, and may therefore be temporarily delayed.
Moreover, the type system handles upgrade dependencies among distributed
objects.

7 Conclusion

In this paper a construct for dynamic class upgrades in Creol is presented, includ-
ing its type system and operational semantics, which allows method redefinition
as well as extending classes with new attributes, methods, superclasses, and in-
terfaces, in the running system. By adding new interfaces, classes may provide
new external services, while the redefinition of methods may improve existing
ones. Our approach exempts programmers from handling the different version
numbers of classes when writing upgrade codes.

To address open distributed systems with concurrent objects, we consider an
asynchronous update mechanism where upgrade overtaking is possible in the
runtime system, and allow objects of different versions to coexist. A successful
introduction of upgrades in this setting requires both type checking and careful
timing of when the upgrades are applied. Runtime errors would occur if upgrades
are applied at a bad time. The type system captures upgrade dependencies and
enforces an ordering of upgrades. If the type checking of an upgrade succeeds,
an effect system provides a list of dependencies for the upgrade. This list of
dependencies is used by the runtime system to ensure that dependent upgrades
are applied in an order which preserves type correctness, while independent
upgrades may be performed simultaneously. Furthermore, it is shown that well-
typed runtime upgrades do not introduce type errors. In future work we plan to

Type-Safe Runtime Class Upgrades in Creol 217

extend the dynamic construct proposed in this paper with type-safe mechanisms
for removing attributes and method definitions, using similar techniques.

References

1. S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation: How to upgrade
distributed systems. In Hot Topics in Op. Sys. (HotOS-IX), pages 43–48, 2003.

2. J. L. Armstrong and S. R. Virding. Erlang - an experimental telephony program-
ming language. In XIII International Switching Symposium, June 1990.

3. G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software
updating. In Unanticipated Software Evolution (USE), May 2003.

4. T. Bloom. Dynamic Module Replacement in a Distributed Programming System.
PhD thesis, MIT, 1983. Also available as MIT LCS Tech. Report 303.

5. C. Boyapati et al. Lazy modular upgrades in persistent object stores. In OOPSLA
2003, pages 403–417. ACM Press, 2003.

6. M. Clavel et al. Maude: Specification and programming in rewriting logic. Theo-
retical Computer Science, 285:187–243, Aug. 2002.

7. F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Re-classification and multi-
threading: FickleMT. In Symp. Applied Computing (SAC’04). ACM Press, 2004.

8. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dy-
namic object re-classification: FickleII. ACM TOPLAS, 24(2):153–191, 2002.

9. D. Duggan. Type-Based hot swapping of running modules. In Intl. Conf. Func-
tional Programming (ICFP-01), ACM SIGPLAN 36(10), pages 62–73, Sept. 2001.

10. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version
change. IEEE Trans. Software Eng., 22(2):120–131, 1996.

11. G. Hjálmtýsson and R. S. Gray. Dynamic C++ classes: A lightweight mechanism
to update code in a running program. In Proc. USENIX Tech. Conf., May 1998.

12. C. R. Hofmeister and J. M. Purtilo. A framework for dynamic reconfiguration of
distributed programs. Tech. Report CS-TR-3119, Univ. of Maryland, 1993.

13. E. B. Johnsen and O. Owe. A dynamic binding strategy for multiple inheritance and
asynchronously communicating objects. Proc. FMCO’04, LNCS 3657. Springer,
2005.

14. E. B. Johnsen, O. Owe, and I. Simplot-Ryl. A dynamic class construct for asyn-
chronous concurrent objects. In Proc. FMOODS, LNCS 3535. Springer, June 2005.

15. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Res. Rep. 327, Ifi, Univ. of Oslo, 2005.

16. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic change
management. IEEE Trans. on Software Engineering, 16(11):1293–1306, Nov. 1990.

17. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support
for type-safe dynamic Java classes. In Proc. ECOOP, LNCS 1850. Springer, 2000.

18. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

19. A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic updating of Java
software. In Software Maintenance (ICSM 2002), pages 649–658. IEEE Press, 2002.

20. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
21. C. A. N. Soules et al. System support for online reconfiguration. In Proc. USENIX

Tech. Conf., pages 141–154, 2003.
22. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:

Safe and flexible dynamic software updating. In Proc. POPL, ACM Press, 2005.

Abstract Interface Behavior of Object-Oriented
Languages with Monitors

Erika Ábrahám1, Andreas Grüner2, and Martin Steffen2

1 Albert-Ludwigs-University Freiburg, Germany
2 Christian-Albrechts-University Kiel, Germany

Abstract. We characterize the observable behavior of multi-threaded, object-
oriented programs with re-entrant monitors. The observable uncertainty at the
interface is captured by may- and must-approximations for potential resp. neces-
sary lock ownership. The concepts are formalized in an object calculus. We show
the soundness of the abstractions.

Keywords: oo languages, formal semantics, thread-based concurrency, monitors,
open systems, observable behavior.

1 Introduction

The behavior of an open system or component can be described by sequences of
component-environment interactions. Even if the environment is absent, it must be as-
sumed that the component together with the (abstracted) environment gives a well-
formed program adhering to the syntactical and the context-sensitive restrictions of the
language at hand. Technically, for an exact representation of the interface behavior,
the semantics of the open program needs to be formulated under assumptions about
the environment, capturing those restrictions. The resulting assumption-commitment
framework gives insight to the semantical nature of the language at hand. Furthermore,
an independent characterization of possible interface behavior with environment and
component abstracted can be seen as a trace logic under the most general assumptions,
namely conformance to the inherent restrictions of the language and its semantics.

This paper deals primarily with the following features, which correspond to those of
modern class-based object-oriented languages like Java [8] or C# [6] and which are
notoriously hard to capture:

– types and classes: the languages are statically typed, and only well-typed programs
are considered.

– references: each object carries a unique identity. New objects are dynamically allo-
cated on the heap.

– concurrency: the mentioned languages feature concurrency based on threads (as
opposed to processes or active objects).

– monitor synchronization: objects can play the role of monitors [9][5], guaranteeing
that synchronized methods are executed mutually exclusive. Recursion —direct or
indirect— via method call requires re-entrant monitors.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 218–232, 2006.
c© IFIP International Federation for Information Processing 2006

Abstract Interface Behavior of Object-Oriented Languages with Monitors 219

We investigate these issues in a class-based, multi-threaded calculus with monitors. The
interface behavior is formulated in an assumption-commitment framework and based on
three orthogonal abstractions:

– a static abstraction, i.e., the type system;
– an abstraction of the stacks of recursive method invocations, representing the recur-

sive nature of method calls in a multi-threaded setting;
– finally as the main contribution, an abstraction of lock ownership.

The contribution of this paper over our previous work in this field (e.g., [2] dealing
with deterministic, single-threaded programs, or [4] considering thread classes) is to
capture re-entrant monitor behavior. In comparison with the mentioned work, the set-
ting here is simpler in one respect: We disallow instantiation across the interface here;
of course, instantiation as such is supported, only not across the boundary between
component and environment.

Incorporating monitors into the formal calculus is not only pragmatically motivated
—after all, Java and similar languages offer monitor synchronization— but also seman-
tically interesting, because the observable equivalences induced by a language offering
synchronized methods and one without are incomparable.

Overview. Section 2 contains syntax and operational semantics of the calculus. Sec-
tion 3 contains an independent characterization of the interface behavior of an open
system, especially capturing the effects of lock ownership. Furthermore, it contains the
basic soundness results of the abstractions. Section 4 concludes with related and future
work. For a full account of the operational semantics and the type system, we refer to
the technical report [3].

2 A Multi-threaded Calculus with Classes

This section presents the calculus, which is based on a multi-threaded object calculus,
similar to the one presented in [7] and in particular [10].

2.1 Syntax

The abstract syntax is given in Table 1. A program is given by a collection of classes
where a class c[(O)] carries a name c and defines its methods and fields. We generally
use o and its syntactic variants as names for objects, c for classes, and n for thread
names and when being unspecific. An object o[c, F, n] keeps a reference to the class c
it instantiates, stores the current value of the fields or instance variables, and maintains
a lock n, referring to the name of the thread holding the lock. The special name⊥thread

(which is not a value) denotes that the lock is free. Immediately after instantiation, all
fields carry the undefined reference⊥c, where c is the (return) type of the field, and the
lock is free. A method ς(self :c).λ(�x:�T).t provides the method body abstracted over the
ς-bound “self” parameter and the formal parameters of the method [1]. We distinguish
between synchronized and un-synchronized methods conventionally by superscripts ls

resp. lu, and just l when unspecific. Besides objects and classes, the dynamic configu-
ration of a program contains threads n〈t〉 as active entities.

220 E. Ábrahám, A. Grüner, and M. Steffen

Table 1. Abstract syntax

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, n] | n〈t〉 program
O ::= F, M object
M ::= lu = m, . . . , lu = m, ls = m, . . . , ls = m method suite
F ::= lu = f, . . . , lu = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l) then e else e expr.

| v.l(v, . . . , v) | v.l := v | currentthread
| new n | new 〈t〉

v ::= x | n values

A thread is basically either a value or a let -construct, which is used for local declara-
tions and sequencing1 of expressions, notably method calls (written v.l(�v)), the creation
of new objects new c where c is a (component) class name, and thread creation new〈t〉.
We use f for instance variables or fields, l = v for field variable declaration. Field ac-
cess is written as v.l, and field update as v′.l := v. Apart from disallowing instantiation
cross the interface between component and environment, we impose the following two
restrictions on the language: firstly, we disallow direct access (read or write) to fields
across object boundaries. Secondly, we forbid that any occurrence of thread creation
new〈t〉 contains a self-parameter, i.e., a name occurring bound by ς . The reason is that
a new thread must start its life “outside” any monitor.

The available types include thread as the type of threads. Furthermore, objects are
typed by the name of their class. As auxiliary types we have T1 × . . . × Tk → T
as the type of methods, and furthermore [l1:U1, . . . , lk:Uk] as the type or interface of
unnamed objects, and [(l1:U1, . . . , lk:Uk)] as the type for classes. For brevity, we omit
the definition of the type system, as it is straightforward.

2.2 Operational Semantics

The operational semantics is given in two stages, component internal steps and external
ones, the latter describe the interaction at the interface. The external steps are defined
in reference to assumption and commitment contexts. The static part of the contexts
corresponds to the static type system (cf. again [4]) and takes care that, e.g., only well-
typed values are received from the environment.

2.2.1 Internal Steps
Table 2 contains a few typical internal reduction steps (the ones for conditionals, se-
quencing via let, thread creation, etc., are straightforward), distinguishing between con-
fluent steps, written �, and other internal transitions, written

τ−→. The CALLi-rules treat
internal method calls, i.e., a call to an object contained in the configuration, where for
synchronized methods, CALLs

i1
takes the free lock and adds a release-action at the end

of the method body. Rule CALLs
i2

describes re-entrant calls. In the call-steps, M.l(o)(�v)

1 Sequential composition t1; t2 of two threads stands for let x:T = t1 in t2, where x does not
occur free in t2.

Abstract Interface Behavior of Object-Oriented Languages with Monitors 221

resp. O.l(o)(�v) stands for t[o/s][�v/�x], when the method suite [M] resp. the object im-
plementation [O] equals [. . . , l = ς(s:T).λ(�x:�T).t, . . .]. The rule CALLu

i additional
deals with field access. Note that the step is a

τ−→-step, not a confluent one. The above
reduction relations are used modulo structural congruence, which captures the alge-
braic properties of parallel composition and the hiding operator.

2.2.2 External Steps
A component exchanges information with the environment via calls and returns. In
the labels, n is the thread that issues the call or returns from the call. Note that there
are no separate external labels for object instantiation; we have forbidden cross-border
instantiation. Given a label ν(Ξ).γ′ where Ξ is a name context, i.e., a sequence of
single ν(n:T) bindings and where γ′ does not contain any binders; we call γ′ the core
of the label. Note that for incoming labels, Ξ contains only bindings to environment
objects and at most one thread name; dually for outgoing communication. Given a label
γ, we refer with 0γ1 to its core. Furthermore, thread(γ) denotes the thread of the label.
The definitions are used analogously for send and receive labels. We write shortly γc

for call and γr for return labels.

γ ::= n〈call o.l(�v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

The external semantics is formalized as labeled transitions between judgments of
the form Δ,Σ � C : Θ,Σ, where Δ,Σ represent the assumptions about the envi-
ronment of the component C and Θ,Σ the commitments. The assumptions require the
existence (plus static typing information) of named entities in the environment. The
semantics maintains as invariant that the assumption and commitment contexts are dis-
joint concerning object and class names, whereas a thread name occurs as assumption
iff. it is mentioned in the commitments. By convention, the contexts Σ (and their alpha-
betic variants) contain exactly all bindings for thread names. This means, as invariant

Table 2. Internal steps

c[(F, M)] ‖ n〈let x:c = new c in t〉 �
c[(F, M)] ‖ ν(o:c).(o[c, F, ⊥thread] ‖ n〈let x:c = o in t〉) NEWOi

c[(F, M)] ‖ o[c, F ′, n′] ‖ n〈let x:T = o.lu(�v) in t〉 τ−→
c[(F, M)] ‖ o[c, F ′, n′] ‖ n〈let x:T = O.lu(o)(�v) in t〉 CALLu

i

c[(F, M)] ‖ o[c, F ′, ⊥thread] ‖ n〈let x:T = o.ls(�v) in t〉 �
c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(�v) in release(o); t〉 CALLs

i1

c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = o.ls(�v) in t〉 �
c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(�v) in t〉 CALLs

i2

o[c, F, n] ‖ n〈let x:T = release(o) in t〉 τ−→ o[c, F, ⊥thread] ‖ n〈t〉 RELEASE

222 E. Ábrahám, A. Grüner, and M. Steffen

we maintain for all judgments Δ,Σ � C : Θ,Σ that Δ, Σ, and Θ are pairwise dis-
joint. The operational semantics is formulated as transitions between typed judgments
Δ,Σ � C : Θ,Σ

a−→ Δ́, Σ́ � Ć : Θ́, Σ́ .

Notation 1. We abbreviate the triple of name contexts Δ,Σ,Θ as Ξ . Furthermore we
understand Δ́, Σ́, Θ́ as Ξ́, etc.

The open semantics checks the static assumptions, i.e., whether at most the names ac-
tually occurring in the core of the label are mentioned in the ν-binders of the label, and
whether the transmitted values are of the correct types. We write Ξ � a : T for that
check, where T is type of the expression in the program that gives rise to the label. We
omit the exact definition here (see [3]).

Besides checking whether the assumptions are met before a transition, the contexts
are updated by a transition step, reflecting the change of knowledge.

Definition 1 (Context update). For an incoming label a = ν(Ξ ′)0a1 where n is a
thread name s.t. Ξ ′ � n, we define Ξ́ as:

Θ́ = Θ + Θ′, Δ́ = Δ + (Δ′,'n), and Σ́ = Σ + Σ′.

In case Ξ ′ �� n, the summand 'n is omitted. We write Ξ + a for the update of Ξ . The
update for outgoing communication is defined dually.

The operational rules of Table 3 use two additional expressions blocks and returns v.
The three CALLI-rules deal with incoming calls. For all three cases, the contexts are
updated to Ξ́ to include the information concerning new objects and threads. Further-
more, it is checked whether the label is type-correct and that the step is possible ac-
cording to the (updated) assumptions Ξ́. In the rules, fn(0a1) refers to the free names
of 0a1 (which equal names(0a1)). Outgoing calls are dealt with in rule CALLO. To
distinguish the situation from component-internal calls, the receiver must be part of the
environment, expressed by Δ � or. Starting with a well-typed component, there is no

Table 3. External steps

a = ν(Ξ′). n〈call or.l(�v)〉? tblocked = let x′:T ′ = blocks in t Ξ́ = Ξ + a Ξ́ � �a� : T
CallI1

Ξ � ν(Ξ1).(C ‖ n〈tblocked〉)
a
−→ Ξ́ � ν(Ξ1).(C ‖ n〈let x:T = or.l(�v) in returns x; tblocked〉)

a = ν(Ξ′). n〈call or .l(�v)〉? Δ � 	n Ξ́ = Ξ + a Ξ́ � �a� : T
CallI2

Ξ � C ‖ n〈stop〉
a
−→ Ξ́ � C ‖ n〈let x:T = or.l(�v) in returns x; stop〉

a = ν(Ξ′). n〈call or .l(�v)〉? Ξ′ � n : thread Ξ́ = Ξ + a Ξ́ � �a� : T

CallI3
Ξ � C

a
−→ Ξ́ � C ‖ n〈let x:T = or .l(�v) in returns x; stop〉

a = ν(Ξ′). n〈call or.l(�v)〉! Ξ′ = fn(�a�) ∩ Ξ Ξ́1 = Ξ1 \Ξ′ Δ́ � or Ξ́ = Ξ + a
CallO

Ξ � ν(Ξ1).(C ‖ n〈let x:T = or.l(�v) in t〉) a
−→ Ξ́ � ν(Ξ́1).(C ‖ n〈let x:T = blocks in t〉)

Abstract Interface Behavior of Object-Oriented Languages with Monitors 223

need in re-checking now that only values of appropriate types are handed out, as the
operational steps preserve well-typedness (“subject reduction”). In addition to the rules
of Table 3, there are similar ones for communication via returns (cf. [3]).

Note that the steps of Table 3 are independent of lock manipulations, e.g.,
an incoming call, which hands over the message via one of the CALLI-rules does
not attempt to obtain the lock; this is done by the internal steps from Table 2. This
decouples the responsibilities of component and environment in the spirit of the as-
sumption/commitment set-up. Whether an incoming call can be sent by the environ-
ment depends only on the past interface interaction and the environment, but not on an
internal state of the component!

3 Interface Behavior

Next we characterize the possible (“legal”) interface behavior as interaction traces be-
tween component and environment. The calls and returns of each thread must be “paren-
thetic”, i.e., each return must have a prior matching call, and we must take into account
whether the thread is resident inside the component or outside. In particular, we must
take into account restrictions due to the fact that the method bodies are executed in
mutual exclusion wrt. individual objects.

3.1 Balance Conditions

We start with auxiliary definitions concerning the parenthetic nature of calls and re-
turns. Starting from an initial configuration, the operational semantics from Section 2.2
assures strict alternation of incoming and outgoing communication and additionally that
there is no return without matching prior call.

Definition 2 (Balance). Let s ↓n be the projection of trace s onto thread n. The bal-
ance of a thread n in a sequence s of labels is given by the rules of Table 4, where the
dual rules for balanced− are omitted. We write � s : balancedn if � s : balanced+

n or
� s : balanced−

n . We call a (not necessarily proper) prefix of a balanced trace weakly
balanced. We write � s : wbalanced+

n if the trace is weakly balanced in n, i.e., if the
projection of the trace on n is weakly balanced, and if the last label is an incoming

Table 4. Balance

B-EMPTY+

� ε : balanced+

� s1 : balanced+ � s2 : balanced+ s1, s2 �= ε
B-II

� s1 s2 : balanced+

� s : balanced−
B-OI

� ν(Ξ).n〈call or.l(�v)〉! s ν(Ξ ′).n〈return(v)〉? : balanced+

224 E. Ábrahám, A. Grüner, and M. Steffen

communication or if s ↓n is empty; dually for � s : wbalanced−
n . The function pop (on

the projection of a trace onto a thread n) is defined as follows:

1. pop s = ⊥, if s is balanced in n.
2. pop (s1as2) = s1a if a = ν(Ξ). n〈call or.l(�v)〉? and s2 is balanced+

n .
3. pop (s1as2) = s1a if a = ν(Ξ). n〈call or.l(�v)〉! and s2 is balanced−

n .

We use pop n r for pop (r ↓n).

Based on a weakly balanced history, we defined the source and target of a commu-
nication event at the end of a trace with the help of the function pop .

Definition 3 (Sender and receiver). Let r a be the non-empty projection of a bal-
anced trace onto the thread n. Sender and receiver of label a after history r are defined
by mutual recursion and pattern matching over the following cases:

sender(ν(Ξ).n〈call or.l(�v)〉!) = 'n

sender(r′ a′ ν(Ξ).n〈call or.l(�v)〉!) = receiver(r′ a′)
sender(r′ a′ ν(Ξ).n〈return(v)〉!) = receiver(pop(r′ a′))

receiver (r ν(Ξ).n〈call or.l(�v)〉!) = or

receiver(r ν(Ξ).n〈return(v)〉!) = sender(pop(r))

For ν(Ξ)n〈call or.l(�v)〉? resp. ν(Ξ).n〈return(v)〉?, the definition is dual.

Δ,Σ � r � a : Θ,Σ asserts that after r, the action a is enabled. Input enabledness
checks whether, given a sequence of past communication labels, an incoming call is
possible in the next step; analogously for output enabledness. To be input enabled, one
checks against the last matching communication. If there is no such label, enabledness
depends on where the thread started:

Definition 4 (Enabledness). Given γ = ν(Ξ).n〈call or.l(�v)〉. Then call-enabledness
of γ after history r and in the contexts Δ,Σ and Θ,Σ is defined as:

Δ,Σ � r � γ? : Θ,Σ if pop n r = ⊥ and Δ � 'n or
pop n r = r′γ′!

(1)

Δ,Σ � r � γ! : Θ,Σ if pop n r = ⊥ and Θ � 'n or
pop n r = r′γ′?

(2)

For return labels γ = ν(Ξ).n〈return(v)〉, Ξ � r � γ! abbreviates pop n r =
r′ν(Ξ ′).n〈call o2.l(�v)〉?, and dually for incoming returns γ?.

We further combine enabledness and determining sender and receiver (cf. Definitions 4
and 3) into the notation Ξ � r � os

a→ or .

3.2 Side Conditions for Monitors

Next we address the restrictions imposed by the fact that the methods are synchronized.
We assume in the following that all methods are synchronized, unless stated otherwise.
We proceed in two stages. The first step in Section 3.2.1 concentrates on individual

Abstract Interface Behavior of Object-Oriented Languages with Monitors 225

Table 5. Potential lock ownership for Θ-locks

� s2 : balanced s2 �= ε Ξ � s1 : ♦o
M-♦

Ξ � s1 s2 : ♦o

receiver (sγc) = o
M-I♦1

Ξ � s γc? : ♦o

receiver (sγc) �= o Ξ � s : ♦o
M-I♦2

Ξ � s γc? : ♦o

Ξ � s : ♦o
M-O♦

Ξ � s γc! : ♦o

threads: given the interaction history of a single thread, we present two abstractions,
one characterizing situations where the thread may hold the lock of a given object, and
a second one where, independent of the scheduling, the thread must hold the lock. The
second step in Section 3.2.2 takes a global view, i.e., considers all threads, to charac-
terize situations in a trace which are (in-)consistent with the fact that objects act as
monitors. The formalization is based on a precedence or causal relation of events of the
given trace. This precedence relation formalizes three aspects that regulate the possible
orderings of events in a trace:

mutual exclusion: If a thread has taken the lock of a monitor, interactions of other
threads with that monitor must either occur before the lock is taken, or after it has
been released again.

data dependence: no value (unless generated new) can be transmitted before it has
been received.

control dependence: within a single thread, the events are linearly ordered.

The formalization of mutual exclusion is complicated by the fact that the locks are not
taken atomically, i.e., we often do not have immediate information when the lock is
taken and relinquished. Instead we must work with the may- and must-approximations
calculated in Section 3.2.1.

3.2.1 Lock Ownership
We start by characterizing when, given a history of interaction of a single thread, it may
own the lock of an object. The “may”-uncertainty is due to the fact that the actual lock
manipulation is separated by the corresponding visible interface interaction by some
internal i.e., non-observable reduction steps.

Definition 5 (May lock ownership). Given a sequence s of interactions of a single
thread and a component object o, the judgment Ξ � s : ♦o (“after s, the thread of s
may own the lock of o.”) is given by the rules of Table 5. For environment locks, i.e.,
when o is an environment object, the definition is dual.

Rule M-♦ states that a strongly balanced tail s2 can be ignored, lock-wise. The two
M-I♦-rules deal with incoming calls, depending on the receiver of the communication.

226 E. Ábrahám, A. Grüner, and M. Steffen

If the call concerns the object o in question, the thread may own the lock afterwards.
If the receiver is distinct from o (cf. rule M-I♦2), the thread may own the lock of o, if
that was the case already before the call. An outgoing call finally does not affect the
♦-information.

Now to the definite knowledge that a thread owns the lock of a given object.

Definition 6 (Must lock ownership). Given a sequence s of interactions of a single
thread and a component object o, the judgment Ξ � s : �o (“after s, the thread of s
must own the lock of o.”) is given by the rules of Table 6. For environment locks, i.e.,
when o is an environment object, the definition is dual.

The first rule M-I�1 deals with incoming calls. Since the lock is not acquired atomi-
cally, an incoming call alone does not guarantee that the thread owns the callee’s lock;
it potentially owns it according to rule M-I♦1. If however the lock of an object is neces-
sarily owned before the call, the same is true afterwards. Rule M-I�2 deals with incom-
ing returns. As for incoming calls, the lock is owned for sure after the communication,
if this was true before already. We need to be careful, however. After the return γr in
question, the thread may continue internally i.e., without performing a further interface
communication, and this internal reduction may relinquish the lock! This may be the
case if the mentioned internal reduction includes the very last internal steps of a syn-
chronized method call, before the call actually returns at the interface, re-establishing
balance. In other words, after γr?, the component may be in a state where internally,
the lock has already been released, only that the fact has not yet been manifest at the
interface. This is captured in the premise Ξ � rγr?γ′

r! : ♦o, i.e., the trace rγr? is ex-
tended by one additional outgoing return γ′

r!, and if the thread may have the lock after
this extended trace, then it must have the lock after γr?.

The M-O�-rules cover outgoing communication. Remember that outgoing commu-
nication leaves the ♦-information unchanged. For �-information, this is different and
characteristic of the non-atomic lock-handling: an incoming call is the sign that we may
have the lock of a component object, but only a following outgoing call is the observable
sign that the component must have the lock.

We write Ξ � t : �no for Ξ � (t ↓n) : �o, and analogously for ♦no.

Lemma 1 (Decidability). Given a weakly balanced trace t, the relations Ξ � t : ♦no
and Ξ � t : �no are decidable.

Table 6. Necessary lock ownership for Θ-locks

Ξ � t : �o
M-I�1

Ξ � tγc? : �o

Ξ � tγr?γ′
r! : ♦o

Ξ � t : �o
M-I�2

Ξ � tγr? : �o

Ξ � t : ♦o
M-O�1

Ξ � tγc! : �o

Ξ � t : �o
M-O�2

Ξ � tγr! : �o

Abstract Interface Behavior of Object-Oriented Languages with Monitors 227

With decidability at hand we can consider the assertions Ξ � t : ♦no and Ξ � t : �no
as boolean predicates, and we write Ξ � t : ¬♦no for Ξ �� t : ♦no, and analogously
for �.

Lemma 2 (� implies ♦). Assume a weakly balanced trace t. If Ξ � t : �no then
Ξ � t : ♦no.

3.2.2 Mutual Exclusion
So far we concentrated on each thread in isolation. This cannot be the whole story, as
mutual exclusion is a global property concerning more than one thread. The formaliza-
tion is based on a precedence relation on the events of a trace. An event is an occurrence
of a label in a trace, i.e., as usual, events are assumed unique. In the following we do
not strictly distinguish (notationally) between labels and events, i.e., we write γ? for an
event labeled by an incoming communication etc. To formalize the dependencies for
mutual exclusion, we need to require that certain events are positioned before the lock
has been taken, or after it has been released. So the following definition picks out rel-
evant events of a trace. In the definition, denotes the prefix relation. The ♦́-function
(“after may”) designates the labels after the point where the lock may be taken, for a
given pair of thread and monitor. The �̀-function (“before must”) picks out the point
before a thread enters the monitor.

Definition 7. Let t be the projection of a weakly balanced trace onto a thread n. Then
the set of events ♦́(t, o) is given by:

♦́(t, o) = {a | longest prefix sa t s.t. Ξ � s : ♦o} . (3)

Furthermore, the set of events �̀(t, o) is given as:

�̀(t, o) = {a1 | Ξ � t : �o, longest prefix sa1a2 t s.t.
Ξ � s : ¬♦o, Ξ � sa1a2 : �o } .

(4)

We use the following abbreviations: ♦́n(t, o) stands for ♦́(t ↓n, o) and ♦́�=n(t, o) =⋃
n′ �=n ♦́(t ↓n′ , o), and analogously for �̀.

Note that the “set” given by ♦́ in Definition 7 contains one element or is empty. The
same holds for �̀.

Based on these auxiliary definitions, we now introduce the three types of dependen-
cies we need to consider. We start with data dependence.

Definition 8 (Data dependence). Given a trace r, reference o, and input label γ?, we
write �Θ r : γ? �d o (in words: “o is potentially data-dependent on event/label γ? of
trace r”), if o ∈ names(γ), where r′γ? is a prefix of r. When given a tuple �o of names,
�Θ r : �γ? �d �o is meant as asserting �Θ r : γi? �d oi, for all oi from �o (for Δ, the
definitions are applied dually).

DΘ(rγ!) = {�γ? � γ!} where �Θ �γ? �d fn(γ!) ∩Δ(r)
DΘ(rγ?) = {} .

(5)

228 E. Ábrahám, A. Grüner, and M. Steffen

The definition states that, from the perspective of the component, arguments of an out-
going communication must either be generated previously by the component, or must
have entered the component from the outside. The complexity of the technical definition
is explained as follows. First of all, we calculate the dependence in equation (5) only for
object references occurring free in the output label; those that occur under a ν-binder
are generated by the component itself, and do not constitute a data dependence. For the
same reason we consider only those free object references, which originally have been
passed to the component during the history; we denote all ν-bound environment objects
in r by Δ(r) (dually for component objects). Finally, each such object in γ! may be
potentially data dependent on more than one incoming label in the history r. It suffices
to add one data dependence edge, which is non-deterministically chosen.

Definition 9 (Control dependence). Given a trace ra, where n = thread(a), we write
� r : a′ �c a, if r ↓n= r′a′ for some label a′. We write C(ra) for {a′ � a | r �
a′ �c a}.

Note that the set C(ra) contains one element, i.e., one edge, or is empty.

Definition 10 (Mutual exclusion). Given a trace ra and a component object o, the
label a gives rise to the precedence edges wrt. component locks given by:

MΘ(rγc?, o) = ♦́�=n(r, o) � γc?
MΘ(rγr?, o) = {}
MΘ(rγ!, o) = γ! � �̀ �=n(r, o), ♦́�=n(r, o) � �̀n(rγ!, o)

(6)

For environment locks, the definition is dual.

Incoming calls can introduce a dependence with other threads n′ competing for the
concerned lock of the callee. Interactions of a thread n′ occurring in the history r after
n′ has applied for the lock (but before γc?) makes evident that n′ succeeded in entering
the monitor. Hence the corresponding monitor interactions of n′ must have happened
before the current incoming call succeeds in entering the monitor. Incoming returns
do not introduce new dependencies wrt. Θ-locks (short for component locks), since
the return releases the corresponding lock or keeps it, but does not acquire a lock nor
competes for it.

Outgoing communication, however, does introduce dependencies, as they in many
cases indicate that a lock definitely is taken or transiently has been taken since the last
interaction of that thread. This introduces two types of dependencies. First, if there
are other definite lock owners, then the current action γ! must precede the monitor
interactions of those successful competitors since the outgoing label is a definite sign
that the thread of γ has held the lock of o before that step. This explains the edges
γ! � �̀ �=n(r, o) in the definition. Secondly, γ! does not only indicate that the thread
in question had the lock prior to the step (at least transiently), but can also introduce
definite lock ownership after the step (in particular, an outgoing call can introduce must-
ownership). Hence, the monitor interactions of all competitors observed in the trace
must precede the point, where the current thread n acquires the lock. This explains the
dependence ♦́�=n(r, o) � �̀n(rγc!, o).

Abstract Interface Behavior of Object-Oriented Languages with Monitors 229

Example 1. Consider the trace t = γc1? γc2? γ′
c1

! γr2 !, in expanded form

t = (νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call o′.l()〉! n2〈return(o′)〉! (7)

This trace is impossible because if n1 were to enter the monitor before n2, which is
required by the data dependency, it implied that n1 kept the lock and n2 could not enter
the monitor. This consequence is independent of the scheduling.

Formally, Definitions 8 – 10 yield the following dependencies, when considering the
trace after two, three, or four steps, respectively:

γc1? γc2?

(1)

γc1?

n1

��

γc2?

γ′
c1

!

(2)

γc1?

n1

��

o′

��

γc2?

n2

��
γ′

c1
! γr2 !

��

(3)

Note that without data dependence from γc1? to γr2 !, the graph is acyclic and the trace
possible. Especially, the return γr2? is possible at the end, even if thread n1 is guaran-
teed to hold the lock, since thread n2 can have performed its monitor interaction before
n1 entered the monitor, only that the return was not yet visible in the trace. ,$

3.3 Legal Traces System

Table 7 specifies legality of traces; the rules combine all mentioned conditions, type
checking, balance, and in particular restrictions due to monitor behavior. We use the
same conventions and notations as for the operational semantics (cf. Notation 1). The
judgments in the derivation system are of the form

GΔ;Δ,Σ � r � s : trace Θ,Σ;GΘ resp. G;Ξ � r � s : trace . (8)

In comparison to the judgments used in the operational semantics, the judgment from
(8) contains a graph GΘ as representation of control, data, and mutex-edges wrt. com-
ponent locks (cf. Section 3.2.2), and dually GΔ for environment locks. We adapt Nota-
tion 1 appropriately, writing G for the pair (GΘ, GΔ).

We write Ξ � t : trace, if there exists a derivation of G∅;Ξ � ε � t : trace
according to Table 7, where G∅ is the empty dependence graph. We write Ξ �Δ t :
trace, if there exists a derivation of G∅;Ξ � ε � t : trace, where only the assumption
contexts are checked in the rules but not the commitments, i.e., the premises Ξ́ � a :ok
and � Ǵ :ok remain in the rules for incoming communication L-CALLI and L-RETI,
but for the outgoing communication, the corresponding premises are omitted (dually
for Ξ �Θ t : trace).

Now to the rules: As base case, the empty future is always legal, and distinguishing
according to the first action a of the trace, the rules check whether a is possible. This
check is represented by checking whether the dependencies collected in the pair G are
consistent, i.e., that the two graphs are acyclic. This is asserted by � G :ok . Further-
more, the contexts are updated appropriately, and the rules recur checking the tail of

230 E. Ábrahám, A. Grüner, and M. Steffen

Table 7. Legal traces (dual rules omitted)

Ξ;G � r � ε : trace L-EMPTY

Ξ � r � os

a→ or Ξ́ = Ξ + a Ξ́ � a :ok

ǴΘ = GΘ ∪ GΘ(ra, or) ǴΔ = GΔ ∪ GΔ(ra, os) � ǴΔ :ok

a = ν(Ξ′). n〈call or.l(�v)〉? Ξ́; Ǵ � r a � s : trace
L-CALLI

Ξ; G � r � a s : trace

Ξ � r � os

a→ or Ξ́ = Ξ + a Ξ́ � a :ok

ǴΘ = GΘ ∪ GΘ(ra, or) ǴΔ = GΔ ∪ GΔ(ra, os) � ǴΔ :ok

a = ν(Ξ′). n〈return(v)〉? Ξ́; Ǵ � r a � s : trace
L-RETI

Ξ; G � r � a s : trace

the trace. The update for the dependence graph GΘ given by the union the graph GΘ

before the step with

GΘ(ra, o) = MΘ(ra, o) ∪ C(ra) ∪DΘ(ra) (9)

where the argument o refers to the monitor relevant in that step, i.e., the monitor intro-
duction potential inconsistencies. The definition for GΔ is dually.

The rules are completely symmetric wrt. incoming and outgoing communication
(and the dual rules omitted). L-CALLI for incoming calls works similar to the CALLI-
rules in the semantics. The premise Δ � r � os

a→ or : Θ checks whether the incoming
call a is enabled and determines the sender and receiver at the same time. The receiver
or, of course, is mentioned directly, but os is calculated from the history r. In case of
incoming communication, the relevant monitor for GΘ is the receiver, and for GΔ, the
sender of the step.

Remember from Section 3.1 that the sender given by, e.g., sender (rγc?) is not (nec-
essarily) the “real” sending object (which remains anonymous), but the last environ-
ment object the corresponding thread has entered in the past via an interface action. The
sender in this sense is exactly the object, whose lock is relevant when updating/checking
the dependencies in GΔ. A consequence of the clean decoupling of component and en-
vironment in the assumption/commitment formulation of the legal traces is, that for in-
coming communication, the update of the graph GΘ cannot introduce a cycle: incoming
communications are checked for legality using the assumptions, not the commitments
(cf. Lemma 5).

3.4 Soundness of the Abstractions

The section contains the basic soundness results of the abstractions.

Lemma 3 (Subject reduction). Ξ � C
s=⇒ Ξ́ � Ć , then Ξ́ � Ć. A fortiori: If

Ξ � n : T , then Ξ́ � n : T .

Abstract Interface Behavior of Object-Oriented Languages with Monitors 231

Lemma 4 (Soundness of lock ownership).

1. Ξ � C
t=⇒ Ξ́ � Ć and Ξ � t : �no, then thread n has the lock of o in Ć .

2. If Ξ � C
t=⇒ and Ξ � t : ♦no and there does not exist an n′ �= n with Ξ � t :

�n′o, then Ξ � C
t=⇒ Ξ́ � Ć for some Ξ́ � Ć s.t. the thread n has the lock of o

in Ć .

Lemma 5. If G;Ξ � r : trace, and Ξ � r � os
γ?→ or, and GΘ is acyclic, then

GΘ + GΘ(rγ?, or) is acyclic, as well.

Lemma 6 (Soundness of abstractions). Assume Ξ � C and Ξ � C
t=⇒. The (1)

Ξ �Θ t : trace and (2) Ξ �Δ t : trace implies Ξ � t : trace.

4 Conclusion

Viswanathan [13] investigates full abstraction in an object calculus with subtyping. The
setting is slightly different from the one here, as the paper does not compare a con-
textual semantics with a denotational one, but a semantics by translation with a direct
one. The paper considers neither concurrency nor aliasing. Recently, Jeffrey and Rathke
[11] extended their work [10] on trace-based semantics from an object-based setting to
a core of Java, called JavaJr, including classes and subtyping. We plan to extend the
language with further features to make it more resembling Java or C#. Concerning the
concurrency model, one should add thread-coordination using wait- and notify meth-
ods. Another interesting direction for extension concerns the type system, in particular
to include subtyping and inheritance. Another direction is to extend the semantics to a
compositional one; currently, the semantics is open in that it is defined in the context
of an environment. However, general composition of open program fragments is not
defined. Concentrating on synchronized methods, this paper relied on an interleaving
abstraction of the concurrent semantics. More complex interface behavior is expected
when considering more general memory models. See e.g. [12] for a recent semantical
study of Java’s memory model.

Acknowledgements. We thank the anonymous reviewers for their thorough work and
their helpful remarks. This work has been financially supported by the NWO/DFG
project Mobi-J (RO 1122/9-4) and by the DFG as part of the Transregional collab-
orative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS).

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
2. E. Ábrahám, F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Observability,

connectivity, and replay in a sequential calculus of classes. In M. Bosangue, F. S. de Boer,
W.-P. de Roever, and S. Graf, editors, Proceedings of FMCO 2004, volume 3657 of LNCS,
pages 296–316. Springer-Verlag, 2005.

232 E. Ábrahám, A. Grüner, and M. Steffen

3. E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-oriented lan-
guages with monitors. Draft technical report, Institut für Informatik und Praktische Mathe-
matik, Christian-Albrechts-Universität zu Kiel, Jan. 2006.

4. E. Ábrahám, A. Grüner, and M. Steffen. Dynamic heap-abstraction for open, object-oriented
systems with thread classes (extended abstract). In Proceedings of CiE’06, 2006. To appear.
A longer version appeared as Technical Report 0601 of the Institute of Computer Science of
the University Kiel, January 2006.

5. P. Brinch Hansen. Operating System Principles. Prentice Hall, 1973.
6. ECMA International Standardizing Information and Communication Systems. C# Language

Specification, 2nd edition, Dec. 2002. Standard ECMA-334.
7. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In

U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3 of ENTCS.
Elsevier Science Publishers, 1998.

8. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification. Addison-
Wesley, Second edition, 2000.

9. C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of the
ACM, 17(10):549–557, 1974.

10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. In
Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

11. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java language.
In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of LNCS, pages 423–438.
Springer-Verlag, 2005.

12. J. Manson, W. Pugh, and S. V. Adve. The Java memory memory. In Proceedings of POPL
’05. ACM, Jan. 2005.

13. R. Viswanathan. Full abstraction for first-order objects with recursive types and subtyping.
In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

Mobility Mechanisms in
Service Oriented Computing�

Claudio Guidi and Roberto Lucchi

Department of Computer Science, University of Bologna, Italy
{cguidi, lucchi}@cs.unibo.it

Abstract. The usual context of service oriented computing is charac-
terized by several services offering the same functionalities, new services
that are continuosly deployed and other ones that are removed. In this
case it can be useful to discover and compose services dynamically at
run-time. Orchestration languages provide a mean to deal with service
composition, while the problem of fulfilling at run-time the informa-
tion about the involved services is usually referred to as open-endedness.
When designing service-based applications both composition and open
endedness play a central role. Such issues are strongly related to mobility
mechanisms which make it possible to design applications where services
acquire during the execution the necessary information to invoke ser-
vices. In this paper we discuss the mobility mechanisms for the service
oriented computing paradigm. To this end we model a service by means
of the notions of interface, location, process and internal state, then we
formalize a calculus supporting a specific form of mobility for each of
them. We conclude by comparing mobility mechanisms of our calculus
with the ones supported by the Web Services technology.

1 Introduction

Service Oriented Computing is an emerging paradigm where services are plat-
form independent autonomous computational entities that, by means of stan-
dard protocols, support interoperability thus allowing to design new and more
complex services out of simpler ones. Orchestration languages [12, 14, 9] pro-
vide a mean to program new services whose functionalities are implemented
by exploiting existing services. In particular, the workflow is programmed from
the perspective of a single endpoint which orchestrates the invocations of all the
involved services and collects all the corresponding results, thus the state of the
execution is controlled in a centralized way within the orchestrator process.

The usual context for service oriented computing is characterized by the
fact that new services can appear as well as other ones can disappear during
the evolution of the system, and by the fact that a number of services offer
the same functionalities. In this scenario it can be useful to select at run-time
the specific service to be invoked among the available ones. Moreover, there are
other cases where it is not possible to statically know the exact location of a
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 233–250, 2006.
c© IFIP International Federation for Information Processing 2006

234 C. Guidi and R. Lucchi

service which is to be invoked. For instance, consider the case of a system where
an administrative application updates the software product versions of clients;
it could be organized as it follows. Each client is equipped of a client service
which provides the software update functionality, the administrative application
is composed by a software manager service and an update service. The software
manager service invokes the update one by passing the list of clients which have
to be updated, then the update service invokes the software update functionality
of all the listed client services. Since it is realistic to suppose that the set of
all clients changes during the evolution of the whole system, the update service
does not know at design time the locations of the clients, thus it needs to acquire
them at run-time and in particular when it is invoked by the software manager
service. The problem of composing services that are not completely known at
design time is usually referred to as open endedness.

In order to deal with open endedness the paper discusses the mobility mech-
anisms in service oriented computing. We proceed as follows: i) we define a
service by logically classifying the aspects that compose it, ii) we reason on the
meaning of supporting the mobility of such aspects, and iii) we present a service-
based calculus supporting mobility mechanisms. In particular, we characterize
a service by means of four components: the location, the process, the interface
and the internal state. The location expresses where the service is deployed and
then available, the process represents the program which permits to supply the
service functionalities, the interface represents the acess points the service can
use to interact with other ones and, finally, the internal state represents the
information the service internally manages. The definition we propose is not
pertaining to a particular technology thus it permits to reason about mobility
without referring to a specific technology. We discuss four kinds of mobility:
the location mobility, the service functionality mobility, the interface mobility
and the internal state mobility. Once having discussed each of them we pro-
ceed by presenting a service-based calculus we use to formally describe these
mechanisms. Such a calculus, equipped of an operational semantics, is an ex-
tension of a previous work [7, 6] obtained by introducing the notion of service
location. At the end we trace a comparison between the mechanisms we pro-
pose and the ones supported by the Web Service technology which is the most
credited proposal for service oriented computing. It emerges that the technol-
ogy supports only internal state mobility and location mobility. In particular,
a section is dedicated to investigate the request-response interaction pattern
mechanism supported by the Web Service technology which seems to be weaker
than the common interpretation of the request-response interaction pattern
behavior.

The paper is structured as it follows. Section 2 defines a service and reasons
about the meaning of the various forms of mobility that could be supported
between services. Section 3 presents the service-based calculus supporting mo-
bility mechanisms and its operational semantics. Section 4 compares the mobility
mechanisms we propose with the Web Services technology. Section 5 concludes
the paper with some final remarks.

Mobility Mechanisms in Service Oriented Computing 235

2 Services Formalization and Mobility Mechanisms

This section is devoted for deducing the basic concepts of services and introduc-
ing the mobility mechanisms they deal with.

2.1 A Model for Representing Services

A service is a computational entity located at a specific unique location (e.g.
a URI) which has an internal state and is able to perform one or more func-
tionalities. A functionality can be a computational process which executes an
algorithm, a coordinating process which needs to interact with other services or
both. The service communication mechanism is based on peer-to-peer message
passing. Every information that needs to be exchanged between two services is to
be communicated by means of interaction points. Each service exhibits a set of
interaction points, called operations, that are exploited for sending and receiving
requests to or from other services. Each operation is described by a name and
an interaction modality. According to [4, 3], there are four kinds of peer-to-peer
interaction modality divided into two groups:

– Operations which supply a service functionality, Input operations :
• One-Way : it is devoted to receive a request message.
• Request-Response: it is devoted to receive a request message which im-

plies a response message to the invoker.
– Operations which request a service functionality, Output operations :

• Notification: it is devoted to send a request message.
• Solicit-Response: it is devoted to send a request message which requires

a response message.

The set of all the operations exhibited by a service represents the interface of
the service. In order to send a request message, a service has to explicit the
output operation and the location of the receiver. In other words, the operation
expresses how to invoke a service whereas the location specifies where the service
can be accessed.

Let Loc be the set of service locations, O and OR be two disjoint sets of
operation names, Sup = {(o, ow) | o ∈ O} ∪ {(or, rr) | or ∈ OR} be the set con-
taining all the input operations where ow and rr indicate One-Way and Request-
Response operations, respectively. Let Inv={(o, n) | o ∈ O}∪{(or, sr) | or ∈ OR}
be the set containing all the output operations where n and sr denote Notifi-
cation and Solicit-Response operations. Let Interfaces = Sup ∪ Inv be the set
of all the possible operations. By definition an operation name unambiguously
identifies a couple of operations: a One-Way with a Notification and a Request-
Response with a Solicit-Response. This is related to the fact that an operation
in Sup can be invoked only by the corresponding operation in Inv that has the
same name.

Formally a service is defined by the following tuple:

Service := (I,M, Pf , l)

236 C. Guidi and R. Lucchi

where I ⊆ Interfaces is the interface containing all the operations it can use,
M is the internal state of the service we use to represent all the information
it manages (e.g. variables, databases), Pf is the process which expresses the
service functionality encoded by exploiting the formalism f and l ∈ Loc is the
location where the service is deployed. We remark that, in order to be as general
as possible, in this section we abstract away from the specific formalism f and
the representation of the internal state; in the following section such notions will
be represented by a specific model.

2.2 Mobility Mechanisms

In this section we describe the mobility mechanisms which deal with open end-
edness. To this end we exploit the service notion of Section 2.1 and we reason
about the meaning of supporting the mobility of each element of the service tu-
ple, that is: internal state mobility, location mobility, interface mobility and ser-
vice functionality mobility. Since the interaction mechanism is based on message
passing, mobility is achieved by communicating service components by means
of exchanged messages. This fact has a significant impact on designing issues
because mobility must be explicitly programmed by system designers.

– Internal state mobility: The mobility of the internal state is strongly re-
lated to the message passing communication mechanism. Indeed the content
of a sent message is part of the information contained in the internal state
of the sender that the receiver acquires and stores in its internal state. In
other words a message exchange between two services can be seen as an
information mobility from the sender internal state to the receiver one.

– Location mobility: Location mobility deals with the possibility to receive
a location by means of a message exchange and to exploit it to access the
service deployed at that location. This means that a service can acquire at
run-time the exact location of a service whose functionalities are known, as
in the case of the update service discussed in the Introduction section which
knows the client functionality but not their locations.

– Interface mobility: Interface mobility means that a service can acquire
at run-time an operation and exhibits it in its interface. In particular, such
a kind of mobility deals only with the mobility of the operation name (by
definition the interaction modality can be derived by its name). Thus, the
service which receives an operation can exhibit it either as an output opera-
tion and an input one. Since operations provides access points to the service
functionalities, which are supplied by the service by means of its internal
process, we consider that the only reasonable usage of an operation acquired
at run-time is for exhibiting the related output operation and not the in-
put one. The calculus we propose in the following section allows to exhibit
acquired operations only as output operations.

– Functionality mobility: Service functionalities are expressed by the in-
ternal processes of a service. The mobility of this component implies that
a process can be communicated within a message exchange and executed

Mobility Mechanisms in Service Oriented Computing 237

by the service receiving it. In this case the receiver can enrich its internal
functionalities by executing the received process. It is important to high-
light the fact that the receiver must be able to execute the received process
by exploiting the specific formalism used for encoding it. In this paper we
do not discuss such a problem that we consider orthogonal to the mobility
mechanisms.

3 A Service-Based Language with Mobility Mechanisms

This section is devoted to model the mobility mechanisms discussed above. In
particular, we proceed as it follows: i) we introduce a calculus for representing
services accordingly with the model discussed in the previous section, ii) we
formalize all the mobility mechanisms by extending step by step the service-
based calculus and we describe how services are affected by them.

3.1 The Service-Based Language

Here, we present a service-based calculus which extends OL, defined in our previ-
ous works, by means of locations. Such a language allows us to describe systems
where each participant is a service1 and supplies a means for describing service
functionalities. For the sake of clarity, we do not take into account asynchronous
communication which has been modeled in our previous work. On the other
hand, this is an orthogonal aspect which can be separately analyzed w.r.t. mo-
bility mechanisms. Formally, let InternalLink be a set of names ranged over by
s, let V ar be the set of variables ranged over by x, y, z, k. We denote with x̃
tuples of variables, for instance, we may have x̃ = 〈x1, x2, ..., xn〉. Let W be a
finite ordered non-empty set of indexes, OL is defined by the following grammar:

P ::= 0 | x := e | ε | s̄ | ō@l(x̃) | ōr@l(x̃, ỹ)
| P ;P | P | P |

∑+
i∈W εi;Pi |

∑⊕
i∈W χi?Pi

ε ::= s | o(x̃) | or(x̃, ỹ, P)
E ::= [P,S]l | E ‖ E

where a service-based system E consists of the parallel composition of services.
A service [P,S]l is a process P identified by its location l ∈ Loc whose variables
state is S. The variables state of a service is described by a function S : V ar →
V al ∪ {⊥} from variables to the set V al ∪ {⊥} ranged over by w. V al, ranged
over by v, is a generic set of values on which is defined a total order relation2.
S(x) represents the value of variable x in the state S (S(x) = ⊥ means that x is

1 In our previous work we referred to this language as an orchestration language.
Usually the term orchestrator means a special service which, in order to supply its
functionalities, coordinates other services. Here, we use the term service for indicat-
ing both orchestrators and simple services.

2 We extend such an order relation on the set V al∪{⊥} considering ⊥ < v, ∀v ∈ V al.

238 C. Guidi and R. Lucchi

not yet initialized), while S[v/x] denotes the state S where x holds value v (we
use S[ṽ/x̃] when dealing with tuples of variables), formally:

S[v/x] = S′ S′(x′) =
{
v if x′ = x
S(x′) otherwise

All the services are executed at different locations, thus they can be composed
by using only the parallel operator (‖). Processes can be composed in parallel
(|), sequence (;) and with two different alternative composition operators. The
operator

∑+
i∈W εi;Pi expresses a non-deterministic choice among input guarded

processes, that represent exhibited operations, whereas the operator
∑⊕

i∈W χi?Pi

expresses a deterministic choice among processes guarded by conditions on vari-
ables state (such processes are of the form χ?P where χ is a logic condition
on the state S associated to P whose syntax is reported in Appendix A). 0
represents the null process whereas the processes x := e deals with variable as-
signment. Processes s and s̄ deal with internal service synchronizations which
are exploited to coordinate the activities of processes running in parallel. In this
case no message is exchanged; this is because the service variables are shared
by all the processes running on that service. As far as the operations are con-
cerned, the process o(x̃) represents a One-Way operation where o ranges over
O, whereas the process or(x̃, z̃, P) represents the Request-Response one where
or ranges over OR. Namely, o(x̃) represents a One-Way operation whose name
is o and the received information are stored in the tuple of variable x̃, while
or(x̃, ỹ, P) represents a Request-Response operation named or which receives a
message, stores the received information in x̃, executes the process P and, at
the end, sends the information contained in ỹ as a response message to the
invoker. On the contrary, the processes ō@l(x̃) and ōr@l(x̃, ỹ) represent the
Notification and the Solicit-Response operations respectively, where o ranges
over O and or ranges over OR. In particular, ō@l(x̃) invokes the operation
o of the service located at l sending the information contained in x̃ whereas
ōr@l(x̃, ỹ) invokes the operation or of the service located at l sending the in-
formation contained in x̃ and waits for the response whose information will be
stored in ỹ.

The semantics of OL is defined in terms of a labelled transition system which
describes the evolution of a service-based system. We define → as the least re-
lation which satisfies the axioms and rules of Tables 1, 2 and 3. Let ActOL =
{ō, o, ō@l(ṽ), o(ṽ), ōn

r (ṽ), on
r (ṽ), ōr@l(ṽ, ỹ)(n), or@l(ṽ, ỹ)(n), σ, τ} be the set of ac-

tions ranged over by γ. σ is a parameterized action of the form (l, l′, op, ṽ, dir)
where l, l′ are service locations, op is an operation name, ṽ are tuples of values
and dir ∈ {↑, ↓}. We exploit dir for discriminating between a request message
and a response one. Table 1 deals with the axioms over P where we have intro-
duced the processes on

r (x̃) and ōn
r (x̃) in order to deal with Request-Response and

Solicit-Response mechanisms. The most interesting axiom is the Request one,
which describes that when it is invoked, the operation behaves as the process
that performs P and, once having completed such a process, performs an output
that is consumed by the invoking service. On the contrary, rules Solicit and

Mobility Mechanisms in Service Oriented Computing 239

Table 1. Axioms over P

(In)

(s,S) s
→ (0,S)

(Out)

(s̄,S) s̄
→ (0,S)

(Notification)

(ō@l(x̃),S)
ō@l(ṽ)
−→ (0,S), ṽ = S(x̃)

(One-Way)

(o(x̃),S)
o(ṽ)
→ (0,S[ṽ/x̃])

(Solicit)

(ōr@l(x̃, ỹ),S)
ōr@l(ṽ,ỹ)(n)

−→ (on
r (ỹ),S), ṽ = S(x̃)

(Request)

(or(x̃, ỹ, P),S)
or@l(ṽ,ỹ)(n)

→ (P ; on
r (ỹ),S[ṽ/x̃])

(Response-Out)

(ōn
r (x̃),S)

ōn

r
(ṽ)

−→ (0,S), ṽ = S(x̃)

(Response-In)

(on
r (x̃),S)

on

r
(ṽ)
→ (0,S[ṽ/x̃])

Response-In deal with Solicit-Response behaviour where, initially, a message is
sent and then the service, by means of the process on

r (x̃), waits for the response.
Table 2 deals with the rules over P where rule Assign deals with variable

assignment within the services; e ↪→S v means that the evaluation process of
the expression e within state S reduces to v. Rule Int-Sync deals with internal
synchronization and CongrP with internal structural congruence denoted by
≡P . Par-Int and Seq describe the behaviour of processes composed in paral-
lel and sequentially respectively, whereas Choice1 and Choice2 describe the
behavior of the two alternative composition operators. The former one non-
deterministically selects an input guarded process among the ones listed in the
choice operator, while the latter one is the deterministic choice depending on
the internal state of the service where the satisfaction relation for � is reported
in Appendix A. In Table 3 the rules at the level of service-based systems are
considered. Rule One-WaySync deals with the synchronization on a One-Way
operation between two services whereas rules Req-Sync and Resp-Sync deal
with the request and the response message exchanges between a Solicit-Response
operation and a Request-Response one. Rule Req-Sync exploits a fresh label n
which is generated in order to univocally link the response synchronization de-
fined in rule Resp-Sync. Par-Ext deals with external parallel composition and
CongrE is for external structural congruence denoted by ≡. Int-Ext expresses
the fact that a service behaves in accordance with its internal processes.

Now, we remind the service formalization presented in section 2 where a
service is represented by the tuple (I,M, Pf , l) and we show how an OL service
[P,S]l is related to it:

– M is modeled by S.
– l represents the location within both the service model and the OL language.
– Pf is represented by a process P in OL where the formalism f corresponds

to OL.
– I represents the interface of a service and it is not explicitly modeled in OL

but it can be extracted from the process P . Indeed, by considering a service
[P,S]l, its interface I is defined by the function Θ(P) where Θ is inductively
defined by the following rules:

240 C. Guidi and R. Lucchi

Table 2. Rules over P

(Assign)
e ↪→S v

(x := e,S) τ→ (0, S [v/x])

(Int-Sync)

(P, S) s→ (P ′, S) , (Q, S) s̄→ (Q′, S)

(P | Q, S) τ→ (P ′ | Q′, S)

(CongrP)

P ≡P P ′ , (P ′, S) γ→ (Q′, S ′), Q′ ≡P Q

(P, S)
γ→ (Q,S ′)

(Par-Int)

(P, S)
γ→ (P ′, S ′)

(P | Q, S)
γ→ (P ′ | Q, S ′)

(Seq)

(P, S)
γ→ (P ′, S ′)

(P ; Q,S)
γ→ (P ′; Q, S ′)

(Choice 1)

(εi; Pi, S)
γ→ (P ′, S ′) i ∈ W

(
∑+

i∈W εi; Pi, S) γ→ (P ′, S ′)

(Choice 2)
S � χi S �/χj , j ∈ W, j < i

(
∑⊕

i∈W χi?Pi, S) τ→ (Pi, S)

(Structural Congruenge over P)

P | 0 ≡P P 0; P ≡P P (P | Q) ≡P (Q | P) (P | Q) | R ≡P P | (Q | R)

1. Θ(0) = φ 2. Θ(x := e) = φ
3. Θ(s) = φ 4. Θ(s) = φ
5. Θ(ō@l(x̃)) = {(o, n)} 6. Θ(ōr@l(x̃, ỹ)) = {(or, sr)}
7. Θ(o(x̃)) = {(o, ow)} 8. Θ(or(x̃, ỹ, P)) = {(or, rr)} ∪Θ(P)
9. Θ(on

r (x̃)) = φ 10. Θ(on
r (x̃)) = φ

11. Θ(P ;P ′) = Θ(P) ∪Θ(P ′) 12. Θ(P | P ′) = Θ(P) ∪Θ(P ′)
13. Θ(

∑+
i∈W εi;Pi) =

⋃
i∈W Θ(εi;Pi) 14. Θ(

∑⊕
i∈W χi?Pi) =

⋃
i∈W Θ(Pi)

It is worth noting that the interface Θ(P), during the evolution of a service
[P,S]l, is monotonically reduced dependently on the consumption of P . Indeed,
let us consider the simple example which follows where, for the sake of brevity,
we abstract away from the internal states:

[ā(x),S]l ‖ [a(y),S′]l′
σ→ [0,S]l ‖ [0,S′]l′

Before the synchronization the interfaces of the two services are Il = {(a, n)} and
Il′ = {(a, ow)} respectively, whereas after the synchronization they are Il = φ
and Il′=φ.

3.2 Internal State Mobility

As we have noticed in section 2 the internal state mobility is strongly related
to the message passing communication mechanism. Considering Table 1 and

Mobility Mechanisms in Service Oriented Computing 241

Table 3. Rules over E

(One-WaySync)

[P, S]l
ō@l′(ṽ)→ [P ′, S ′]l , [Q, T]l′

o(ṽ)→ [Q′, T ′]l′

[P, S]l ‖ [Q, T]l′
σ→ [P ′, S ′]l ‖ [Q′, T ′]l′

, σ = (l, l′, o, ṽ, ↑)

(Req-Sync)

[P, S]l
ōr@l′(ṽ,ỹ)(n)→ [P ′, S ′]l , [Q, T]l′

or@l(ṽ,ỹ)(n)→ [Q′, T ′]l′

[P, S]l ‖ [Q, T]l′
σ→ [P ′, S ′]l ‖ [Q′, T ′]l′

, n fresh, σ = (l, l′, or, ṽ, ↑)

(Resp-Sync)

[P, S]l
ōn

r (ṽ)→ [P ′, S ′]l , [Q, T]l′
on

r (ṽ)→ [Q′, T ′]l′

[P, S]l ‖ [Q, T]l′
σ→ [P ′, S ′]l ‖ [Q′, T ′]l′

, σ = (l, l′, or, ṽ, ↓)

(Par-Ext)

E1
γ→ E′

1

E1 ‖ E2
γ→ E′

1 ‖ E2

(CongrE)

E1 ≡ E′
1 , E′

1
γ→ E′

2, E′
2 ≡ E2

E1
γ→ E2

(Int-Ext)

(P, S)
γ→ (P ′, S ′)

[P, S]l
γ→ [P ′, S ′]l

(Structural Congruence over E)

P ≡P Q

[P, S]l ≡ [Q, S]l
E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

Table 3, such a kind of mobility is expressed by the rules which deal with opera-
tion processes. In particular, let us consider rules Notification and One-Way
in order to clarify how it works. In the former the internal state information
ṽ contained within the variables x̃ are sent by exploiting a message whereas in
the latter the received information ṽ are stored into the variables x̃ contained
within the internal state of the receiver. Rule One-WaySync of Table 3 couples
the two axioms by correlating the receiver location to that explicited within the
notification process and σ is a formal representation of the exchanged message.
Summarizing, internal state mobility is modeled as a an information exchange be-
tween the internal state of the sender and the internal state of the receiver. Such
a mobility mechanism is the cornerstone of service-based systems and supplies
the basic layer on which the other mobility mechanisms can be implemented.

3.3 Location Mobility

In order to deal with location mobility here we modify the syntax of OL by
replacing the processes ō@l(x̃) and ōr@l(x̃, ỹ) with the new processes which
follow:

P ::= . . . | ō@z(x̃) | ōr@z(x̃, ỹ) | . . .

242 C. Guidi and R. Lucchi

where z is a variable. These novelties allow us to dynamically bind the receiver
location when performing the Notification and Solicit-Response operations by
evaluating the content of variable z. The semantics of axioms Notification
and Solicit of Table 1 change as it follows:

(Notification)

(ō@z(x̃), S)
ō@l(ṽ)−→ (0, S),

ṽ = S(x̃)
l = S(z)

(Solicit)

(ōr@z(x̃, ỹ), S)
ōr@l(ṽ,ỹ)(n)−→ (on

r (ỹ), S),
ṽ = S(x̃)
l = S(z)

Variable z is evaluated when the processes are executed. This mechanism allows
us to design a service which does not know a priori the locations of the services
to be invoked that can be acquired during the execution. In order to clarify such
a behaviour let us consider the business scenario example depicted in Fig. 1
where a customer purchases a good invoking a shopping service, the shopping
service invokes a bank service for performing the payment and the bank service
invokes the customer that receives the invoice. In Fig. 1 we have exploited an
informal graphical representation where services are represented by circles, the
symbol @uri expresses the fact that the service is available at the location uri,
the input operations exhibited by a service are represented by a black line whose
name is shown within a rectangle and the arrows represent a message exchange.

Fig. 1. Business scenario example

In the following we formalize such a scenario by supposing that the bank service
does not know the location of the customer:

System ::=[z1 := uri2; add := uri1; inv := ⊥;BUY@z1(add);REC(inv),Sc]uri1
‖ [z2 := uri3; fwadd := ⊥;BUY(fwadd);PAY@z2(fwadd),Ss]uri2
‖ [z3 := ⊥; invoice = msg;PAY(z3);REC@z3(invoice),Sb]uri3

The shopping service located (at uri2) receives on the One-Way operation BUY
the location of the customer (uri1) and stores it within the variable fwadd.
Moreover, it forwards it to the bank service by exploiting the Notification oper-
ation PAY. The bank service (at uri3) receives on PAY the customer location
and then exploits it for invoking the REC operation of the customer sending the

Mobility Mechanisms in Service Oriented Computing 243

invoice represented by the value msg. Finally, the customer stores the received
invoice within the variable inv.

Location mobility is built on top of the internal state mobility because acquired
locations are stored within the internal state. Such a kind of mobility allows us to
design flexible services which bind their output operations at run-time.

3.4 Interface Mobility

In order to deal with interface mobility here we modify the syntax of OL by
replacing the output operation processes with the new processes that follow:

P ::= . . . | k̄@z(x̃) | k̄@z(x̃, ỹ) | . . .
where z and k are variables. As far as the output operations are concerned, the
operation names are evaluated at run-time by considering the value of an inter-
nal state variable (k). The new semantics of axioms Notification and Solicit
is as follows:

(Notification)

(k̄@z(x̃), S)
ō@l(ṽ)−→ (0, S),

o = S(k)
ṽ = S(x̃)
l = S(z)

(Solicit)

(k̄@z(x̃, ỹ), S)
ōr@l(ṽ,ỹ)(n)−→ (on

r (ỹ), S),
or = S(k)
ṽ = S(x̃)
l = S(z)

Furthermore, we modify some rules for the inductive definition of Θ which allows
us to extract the service interface. In particular, we modify the rules 5 and 6
which deal with the output operations:

5. Θ(k̄@z(x̃),S) =
{
{(S(k), n)} if S(k) �= ⊥ ∧ S(k) ∈ O
φ otherwise

6. Θ(k̄@z(x̃, ỹ),S) =
{
{(S(k), sr)} if S(k) �= ⊥ ∧ S(k) ∈ OR

φ otherwise

It is worth noting that now the interface depends also by the internal state3.
This is due to the fact that operation names are contained within variables.
The condition S(k) �= ⊥ guarantees that the interface contains only the known
operations.

By exploiting the new output operation processes it is possible to design
separately the functionalities which deal with output operations from the actual
interface of the service. Let us consider the example of Fig. 1 where, now, we
suppose that the bank service does not know a priori both the location and the
one-way operation of the customer:

System ::= [z1 := uri2; add := uri1; opr1 := REC; inv := ⊥
;BUY@z1(〈add, opr1〉);REC(inv),Sc]uri1
‖ [z2 := uri3; fwadd := ⊥; opr2 := ⊥
;BUY(〈fwadd, opr2〉);PAY@z2(〈fwadd, opr2〉),Ss]uri2
‖ [z3 := ⊥; k3 := ⊥; invoice = msg;PAY(z3, k3); k3@z3(invoice),Sb]uri3

3 Namely, the domain of Θ now considers also the internal state S . For the sake of
brevity, we do not show all the rules because they are not affected by the state.

244 C. Guidi and R. Lucchi

The bank service indeed, receives from the shopping service both the location and
the name of the operation of the customer and stores it in l3 and k3 respectively.
The customer sends, by means of the variable opr1, the operation REC on
which it will wait for receiving the invoice. The example shows how is possible
to design a service (in the example the bank one) with a functionality which
deals with an output operation without statically knowing its interface. This
fact has some implications on the service interface. By considering the new rules
for Θ, the interface can also dynamically includes new operations. The interface
of the bank service indeed, is I = {(PAY, ow)} before receiving a message on
the PAY operation and I = {(REC, n)} after the reception of the customer
operation.

3.5 Service Functionality Mobility

In order to deal with service functionality mobility we extend the OL language
by introducing the following process:

P ::= . . . | run(x)

run(x) allows us to execute the code contained within the variable x. The se-
mantics of such a primitive is expressed by a new rule that must be added to
those presented in Table 2:

(Run)

(run(x),S) τ→ (S(x),S)

Since the received code can be formed by operation processes, we add a new
rule for inductively defining the function Θ which allows us to extract the inter-
face of the service:

13. Θ(run(x),S) =
{
Θ(S(x)) if S(k) �= ⊥
φ otherwise

Service functionality mobility directly deals with code mobility. In particular it
allows us to design services where a specific part of its functionalities are un-
known at design time and they are acquired during the execution of the service.
In order to clarify this aspect let us consider the example of the shopping service
again. Now, we suppose that the customer that wants to interact with the shop-
ping service does not know a priori the conversation rules to follow. In other
words, the customer does not know that it has to exhibit the REC operation in
order to receive the invoice from the bank service.

System ::= [z1 := uri2; add := uri1; code1 := ⊥
;BUY@z1(add, code1); run(code1),Sc]uri1
‖ [z2 := uri3; fwadd := ⊥; code2 :=“inv := ⊥;REC(inv)”
;BUY(fwadd, code2,0);PAY@z2(fwadd),Ss]uri2
‖ [z3 := ⊥; invoice = msg;PAY(z3);REC@z3(invoice),Sb]uri3

Here, the customer invokes the operation BUY of the shopping service which is
modeled as a Request-Response operation. The customer receives as a response

Mobility Mechanisms in Service Oriented Computing 245

a piece of code and stores it within the variable code1, then it executes it by
exploiting the primitive run(code1). After the execution of the code stored within
code1 the system behaves as the example presented in the location mobility
section. It is worth noting that the customer receives the input operation REC
which enriches at run-time its interface similarly to the case of the interface
mobility. Even if the two kind of mobility could appear similar w.r.t. the effects
on the interface, they are different from a system design point of view. In the
case of interface mobility the designer must specify that an input operation
has to be performed without knowing its name, on the contrary in the case of
service functionality mobility the designer does not know the process which will
be executed. Furthermore, by exploiting the primitive run(x) it is possible to
enrich the service interface also with both input and output operations. In the
example indeed, the customer service interface is enriched with the operation
(REC, ow) which is an input one.

Some considerations about code mobility issues are necessary. On the one
hand when a service executes a process which has been acquired at run-time,
it does not know how it behaves. On the other hand, when programming a
process which will be executed by another service the internal behavior of such
a service is not known. This fact implies a number of issues. First of all, internal
processes share the variables state thus the acquired process could interfere with
the behavior of the other ones. Moreover, an acquired process could exploit a
certain name s to perform internal synchronizations but the same name could
be already used by other internal processes, thus alterating also in this case
the behavior of the other processes. A formal analysis of these issues is out of
the scope of this paper but we consider that, to avoid at least the issues listed
above, a mechanisms which syntactically renames all the variables and names of
the acquired process which interferes with the ones of the internal processes is
necessary before executing it.

4 Web Services Technology

In this section we discuss the mobility mechanisms presented in the previous
sections w.r.t. Web Services technology. Furthermore, we discuss a particular
hidden mobility related to the Request-Response operation.

4.1 Web Service Mobility Mechanisms

– Internal state mobility : Since Web Services are a message passing tech-
nology, they fully support the internal state mobility as we have formalized
it in Section 3. In particular, an information exchange between two services
is an XML document whose schema is defined within the SOAP [16] speci-
fication.

– Location mobility : As we have shown in Section 3 location mobility is
strictly related to the communication mechanisms of the internal process
that we have formalized by exploiting OL. Although that Web Services are
platform independent and there is not a standard formalism for describing

246 C. Guidi and R. Lucchi

the internal process, here we consider orchestration languages as a class of
languages which can be used for expressing it. Indeed, they deal with service
coordination aspects which are fundamental to the end of location mobility.
In particular, we consider WS-BPEL because it is the most credited proposal
for orchestration. It supports compositional operators as parallel, sequence
and choice and it has specific primitives to interact with other services which
resemble the input and output operation processes of the OL calculus. WS-
BPEL supports location mobility by managing endpoints within its internal
variables. An endpoint, which is defined within WS-Addressing [15] speci-
fication, is a data structure which contains all the information required for
invoking a service, that is the operation and the location.

– Interface mobility : The interface mobility that we have formalized in Sec-
tion 3 is strictly related to the communication mechanisms of the internal
process. Following the same approach of location mobility we consider WS-
BPEL. As previously mentioned, WS-BPEL is able to manage endpoints
which contain the information related to the operations. However it does
not support interface mobility because the operations it exploits for invoking
and receiving messages are defined statically at design time and they cannot
be bound at run-time. To the best of our knowledge interface mobility is not
supported by the Web Services technology even if it is possible to consider
other solutions that indirectly allows us to achieve it. Let us consider WSDL
specification [18] that is an XML-based language which allows to specify the
operations (One-Way, Request-Response, Notification and Solicit-Response)
exhibited by a service4. Several programming languages at a low-level w.r.t.
the orchestration ones are equipped of libraries which permit to simplify the
service composition. In particular, there exist libraries in Java [2, 1, 13] that,
given a WSDL document, automatically produce the corresponding classes
which allow us to invoke all the operations supplied by the Web service de-
scribed in that document. In this case we can guess that by exploiting such
languages and libraries we can also support interface mobility.

– Service functionality mobility :To the best of our knowledge Web Ser-
vices technology does not explicitly support such a kind of mobility. Never-
theless we trace a comparison between service functionality mobility and
some languages for describing conversational behaviours of service-based
systems as, for instance, WS-CDL [17]. Such languages are exploited for
describing the communication protocols services have to follow in order to
participate to a given service-based system. We can imagine that a ser-
vice which is willing to access that system could download the related WS-
CDL document and extracts a piece of code which allows it to follows the
protocol.

4 A WSDL interface could be modeled by exploiting the service interface I defined
in section 2 but there are some relevant issues to take into account: a WSDL doc-
ument is statically defined and can not change dynamically during the evolution of
the service by adding or removing some of the exhibited operations and, generally,
Notification and Solicit-Response operations are unused.

Mobility Mechanisms in Service Oriented Computing 247

4.2 The Hidden Mobility of the Request-Response

In this section we discuss the Request-Response interaction mechanism and in
particular we compare the one we propose with the one supported by the Web
Services technology. Usually the request-response interaction pattern has been
intended as a powerful mechanism which is able to relate the two message ex-
changes involved within a Request-Response as modeled in our calculus and in
[10, 11]. In particular, these proposals formalize the Request-Response behaviour
by joining the output operation process with the input one. As far as our pro-
posal is concerned, in Table 3 we have exploited a fresh label n in order to couple
the two processes.

In the Web Services technology the Request-Response interaction is not sup-
ported at the service application level but, as specified by the WSDL recommen-
dation, it has to be supplied by the communication infrastructure (e.g. HTTP)
which exploits the service locations to bind the two message exchanges instead of
the service processes involved in the interactions as in our calculus. This means
that if a service invokes two times a Request-Response operation at the same
service location the two responses could be swapped with each other. Example
1, which follows, reveals that the interaction mechanism supported by the Web
Services technology is weaker than the one previously proposed.

Table 4 reports the semantics rules governing the Request-Response interac-
tion pattern á la Web Services. As it emerges by the semantics rules, there exists
a hidden form of location mobility that is used by the infrastructure to support
the response phase. Indeed, the infrastrure keeps the location invoker and uses
it when the response is to be sent. Such a semantics, that we consider faithful
w.r.t. the Web Services technology, represents a meaningful contribute towards
the formal reasoning of the current technology features and lacks.

Example 1. Let us consider the following example where a service, say A, pro-
vides a functionality which computes, given two numbers a and b, |a| − |b|. Such

Table 4. Modified rules for Request-Response

(Solicit)

(ōr@l(x̃, ỹ),S)
ōr@l(ṽ,ỹ)
−→ (or@l(ỹ),S), ṽ = S(x̃)

(Request)

(or(x̃, ỹ, P),S)
or@l(ṽ,ỹ)

→ (P ; ōr@l(ỹ),S[ṽ/x̃])

(Response-Out)

(ōr@l(x̃),S)
ōr@l(ṽ)
−→ (0,S), ṽ = S(x̃)

(Response-In)

(or@l(x̃),S)
or@l(ṽ)
→ (0,S[ṽ/x̃])

(Req-Sync)

[P,S]l
ōr@l′(ṽ,ỹ)

→ [P ′,S ′]l , [Q, T]l′
or@l(ṽ,ỹ)

→ [Q′, T ′]l′

[P,S]l ‖ [Q, T]l′
σ
→ [P ′,S ′]l ‖ [Q′, T ′]l′

, σ = (l, l′, o, ṽ, ↑)

(Resp-Sync)

[P,S]l
ōr@l′(ṽ)

→ [P ′,S ′]l , [Q, T]l′
or@l(ṽ)
→ [Q′, T ′]l′

[P,S]l ‖ [Q, T]l′
σ
→ [P ′,S ′]l ‖ [Q′, T ′]l′

, σ = (l, l′, o, ṽ, ↓)

248 C. Guidi and R. Lucchi

a service exploits another service, located at l, which supplies the absolute value
and the subtraction functionality supplied by means of the Request-Response
operations ABS and SUB, respectively. Let OP be the Request-Response op-
eration A uses to supply its functionality, the service could be programmed as
it follows (we do not describe the variables state since its initial configuration
does not alterate the behaviour):

A ::= OP (〈a, b〉, res, P)
P ::= (ABS(a, absA)@l | ABS(b, absB)@l);SUB(〈absA, absB〉, res)@l

In the case the Request-Response mechanisms is the one modeled by rules of
Table 4, there exists an execution path where the responses of the two ABS
invocations can be swapped and then, in this case, the OP response is |b| − |a|
instead of the expected value |a| − |b|. On the contrary, in the case the Request-
Response mechanism is modeled as in section 3 such a behavior is not allowed.

5 Conclusion

In this work we have discussed the mobility aspects of service-oriented comput-
ing. We have caught the essence of a service by modeling it as a tuple of four
basic components (state, location, interface, process) and we have discussed a
specific form of mobility for each of them. Namely, we have modeled such a
tuple by extending a formal language defined in our previous works that has
been exploited as a formal workbench for highlighting the peculiarities of each
kind of mobility. Finally, we have analyzed the Web Services technology in order
to show which kinds of mobility are actually supported. The discussion about
Web Services shows that only the internal state mobility, by means of message
passing communication mechanism, and the location mobility are supported by
this technology. On the other hand, interface mobility and service functionality
mobility raise some interesting issues from the system design point of view. In
this sense our formal investigation could be a good starting point for enriching
the actual technologies with these new kinds of mobility. Moreover, we have
modeled the behavior of the Request-Response interactions supported by the
Web Services by discussing how it seems to be weaker than the one we propose
in our model.

The contribute of this paper is twofold, on the one hand we have formalized
the mobility aspects of service oriented computing and on the other hand we have
discussed them by analyzing the current technology state of the art. To the best
of our knowledge this is the first attempt to strictly formalize mobility aspects of
the service oriented computing paradigm. There are several works which exploit
other formalisms like pi-calculus [10, 5] and Petri-nets [8] for dealing with service-
based composition but a comprehensive investigation on mobility does not exist.

In our previous work we have defined a formal framework devoted to represent
the peculiarities of choreography and orchestration languages and their interde-
pendencies. It emerges that orchestration is a further developement step w.r.t.
the choreography which defines the conversation rules among participants. A

Mobility Mechanisms in Service Oriented Computing 249

conformance notion captures such a relationship and permits to verify whether
an orchestrated system behaves accordingly with a given choreography. In this
paper we have enriched the orchestration language (here called service-based
language) with mobility aspects and, as a future work, we plan on the one hand
to rephrase the choreography language and the conformance notion by consider-
ing the issues raised by mobility mechanisms and, on the other hand, we intend
to enrich our formal framework by introducing other fundamental aspects like
sessions.

References

1. Apache. Axis (Java2WSDL). [http://ws.apache.org/axis/index.html].
2. Apache. Axis (WSDL2Java). [http://ws.apache.org/axis/index.html].
3. A. Barros and E. Borger. A compositional framework for service interaction pat-

terns and interaction flows. In Proc. of International conference on formal engi-
neering methods (ICFM 2005), LNCS, pages 5–35. Springer Verlag, 2005.

4. A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service interaction patterns:
Towards a reference framework for service-based business process interconnection.
Tech. Report FIT-TR-2005-02,Faculty of information Technology, Queensland Uni-
versity of technology, Brisbane, Australia, March 2005.

5. L. Bocchi, C. Laneve, and G. Zavattaro. A Calculus for Long-Running Transac-
tions. In FMOODS, volume 2884 of LNCS, pages 124–138. Springer Verlag, 2003.

6. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavat-
taro. Choreography and orchestration conformance for system design. In Proc. of
8th International conference on Coordination Models and Languages (Coordination
2006), To appear.

7. Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Za-
vattaro. Choreography and orchestration: A synergic approach for system design.
In ICSOC, pages 228–240, 2005.

8. Remco Dijkman and Marlon Dumas. Service-oriented Design: a Multi-viewpoint
Approach. Int. J. Cooperative Inf. Syst., 13(4):337–368, 2004.

9. F. Leymann. Web Services Flow Language (WSFL 1.0). [http://www-4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf], Member IBM Academy of Tech-
nology, IBM Software Group, 2001.

10. R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL. Journal
of Logic and Algebraic Programming. Elsevier Press. To appear.

11. J. Misra and W. Cook. Computation orchestration. Software and Systems model-
ing. To appear.

12. OASIS. Web Services Business Process Execution Language Version 2.0, Work-
ing Draft. [http://www.oasis-open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm].

13. Sun microsystems. Java Web Services Developer Pack. [http://java.sun.com/ web-
services/downloads/webservicespack.html].

14. S. Thatte. XLANG: Web Services for Business Process Design. [http://
www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm], Microsoft Corpora-
tion, 2001.

15. W3C member submission 10 august, 2004. Web Services Addressing. [http://
www.w3.org/submission/ws-addressing/].

250 C. Guidi and R. Lucchi

16. World Wide Web Consortium. SOAP Version 1.2 Part 1: Messaging Framework.
[http://www.w3.org/TR/soap12-part1/].

17. World Wide Web Consortium. Web Services Choreography Description Language
Version 1.0. Working draft 17 December 2004. [http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217/].

18. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1.
[http://www.w3.org/TR/wsdl].

A Syntax of χ and Satisfaction Relation for �
The syntax of χ is

χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ

where e denotes an expression which can contain variables references and which
can be evaluated into a value v or, when some variables within the expression
are not instantiated, into the symbol ⊥.

The satisfaction relation for � is defined by the following rules:

1. S(x) = ⊥ ⇒ S � (x ≤ ⊥ ∧⊥ ≤ x)
2. e ↪→S v,S(x) ≤ v ⇒ S � x ≤ e
3. e ↪→S v, v ≤ S(x) ⇒ S � e ≤ x
4. S � χ′ ∧ S � χ′′ ⇒ S � χ′ ∧ χ′′

5. ¬(S � χ)⇒ S � ¬χ

We highlight the fact that rule 1 states that when a variable x is defined with
value ⊥ the only condition which can be satisfied on such a state is x = ⊥.

Theoretical Foundations of Scope-Based
Compensable Flow Language for Web Service�

Geguang Pu1, Huibiao Zhu1, Zongyan Qiu2,
Shuling Wang2, Xiangpeng Zhao2, and Jifeng He1

1 Software Engineering Institute
East China Normal University, Shanghai, China, 200062

2 LMAM and Department of Informatics, School of Mathematical Sciences
Peking University, Beijing, China, 100871

Abstract. Web Services have become more and more important in
these years, and BPEL4WS is a de facto standard for the web ser-
vice composition and orchestration. In this paper, we propose a lan-
guage BPEL0 to capture the important features of BPEL4WS, with the
scope-based compensation handling mechanism, which allow the users to
specify the compensation behaviors of processes in application-specific
manners. The operational semantics of BPEL0 is formalized, with some
key concepts related to compensation handling, i.e., the compensation
closure and compensation context. Based on the achieved semantics, the
concept of bisimulation in hierarchy structure is investigated, which is
used to define the equivalence between BPEL0 programs.

1 Introduction

Web services and other web-based applications have been becoming more and
more important in practice. In this blooming field, various web-based business
process languages are introduced, such as XLANG [19], WSFL [13], BPEL4WS
(BPEL) [9], and StAC [6], which are designed for the description of services
composed by a set of processes across the Internet. Their goal is to achieve the
universal interoperability between applications by using web standards, as well
as to specify the technical infrastructure for carrying out business transactions.
However, BPEL has become the de facto standard for specifying and executing
workflow specification for web service composition.

The important feature of BPEL is that it supports the stateful, long-running
interactions involving two or more parties. Therefore, it provides the ability to
define fault and compensation handing in application-specific manner, resulting
in a feature called Long-Running (Business) Transactions (LRTs). The concept
compensation is due to the use of Sagas [11] and open nested transactions [15].

Aimed to be a language for web service composition and LRTs, BPEL pro-
vides a special form of compensation mechanism, with the scope-based fault and
� The authors at East China Normal University were supported by National Basic

Research Program of China (No. 2002CB312001). The authors at Peking University
were supported by National Natural Science Foundation of China (No. 60573081).

R. Gorrieri and H. Wehrheim (Eds.): FMOODS 2006, LNCS 4037, pp. 251–266, 2006.
c© IFIP International Federation for Information Processing 2006

252 G. Pu et al.

compensation handling. The mechanism adopted by BPEL is very flexible and
powerful, and of course, it causes the complexity of the BPEL and increases
the difficulty of the usage. As a result, not surprisingly, the formal semantics of
scope-based workflow language, such as BPEL, is not very clear at present.

In this paper, we focus on the theoretical foundation of scope-based flow
languages, and propose a language called BPEL0 which can be regarded as the
foundation of BPEL. The operational semantics of BPEL0 is carefully studied,
and with the help of the key concepts of compensation closure and compensation
context, BPEL0 clearly illustrates how the scope-based compensation mechanism
works. For the discussion of the equivalence of BPEL0 programs, which not only
includes the normal programs, but also contains the compensation programs, we
propose the concept of bisimulation in hierarchy structure, which reflects the
scope-based compensation mechanism, as the scopes in BPEL0 are allowed to
be nested arbitrarily.

This paper is organized as follows. Section 2 introduces the BPEL0 language
with its informal illustrations. Section 3 presents the semantics of BPEL0. Sec-
tion 4 studies the equivalence of BPEL0 by means of bisimulation in hierarchy
structure. Section 5 discusses the related work on compensational workflow lan-
guage. The last section gives the conclusion and future work.

2 The BPEL0 Language

The design of BPEL0 is enlightened by BPEL, where the complicated XML syn-
tactical style of BPEL is abandoned, but all the important features are included.
BPEL0 process is constructed by activities, as shown in BPEL. The syntax of
BPEL0 is as follows:

BA ::= skip | x̄ := ē | wait t | rec a x | rep a v | inv a x y | throw | ε

A ::= BA | A; A | A � b � A | b ∗ A |
g → A[]g → A | LA ‖L LA | A � A | {A ? C :F}n

LA ::= b {ľ1, ľ2} ◦ A | A ◦ {b1 � l̂1, b2 � l̂2}
g ::= rec a x | wait t

C, F ::= �n | . . . (similar to A)
BP ::= {|A : F |}

Basic Activities. The basic activity skip does nothing and terminates imme-
diately. x̄ := ē is a multiple assignment which modifies the global state of the
business process. Activity wait t makes the process to wait for a given time period
t. Activities rec a x and rep a v communicate with the environment of the busi-
ness process, while inv a x y calls a web service offered by its environment, with
two kinds of functions: synchronous request/response or asynchronous one-way
operation. Here we assume inv is a two-way operation. The behavior of one-way
inv is similar to that of activity skip.

Activity throw generates a fault from inside the business process explicitly. We
assumeany fault produced in an activity canbe capturedby its corresponding fault
handler when the fault handler does exist. We use ε to denote the empty text.

Theoretical Foundations of Scope-Based Compensable Flow Language 253

Sequential, Conditional, and Iterative Activities. A; B is the sequential
composition of activities A and B. The behavior of the conditional A b ! B is
the same as that of A if boolean variable b is evaluated to true, otherwise, it is
the same as B. Activity b ∗ A supports repeated performance of the specified
activity A, until the given boolean condition b no longer holds.

Choice Activities. BPEL0 provides two kinds of choice: the external choice
g1 → A [] g2 → B and the internal choice A , B. In BPEL, there is only the
external choice, which awaits the occurrence of one of a set of events and then
performs the activity associated with the event that occurred. We added the
internal choice into BPEL0 to facilitate the reasoning about programs.

Flow and Link Activities. Flow activity A ‖L B executes activities A and B
in parallel, where A and B are synchronized over the link set L.

The link construct is a mechanism in BPEL to provide additional synchro-
nization in flow activities. Each link must have exactly one activity within the
flow as its source and exactly one activity as its target. The source and tar-
get of a link may be nested in arbitrary depth within the flow activity, except
for the boundary-crossing restrictions [9]. To model this, two link structures
A ◦ {b1 ! l̂1, b2 ! l̂2} and b {ľ1, ľ2} ◦ A are introduced into BPEL0. In fact, an
activity can be the source or target of an arbitrary number of links in BPEL.
We make them two here to simplify the discussion, which can be generalized.

A◦{b1 ! l̂1, b2 ! l̂2} denotes that A is the source of l1 and l2 which are assigned
boolean values b1 and b2 when A completes, while in b {ľ1, ľ2}◦B, B is the target
of l1 and l2 with condition b. We use l̂ and ľ to stand for the source and target
of link l respectively. Consider the following example:

ľ ◦A ‖{l} B ◦ {true ! l̂}
Though activities A and B can execute in parallel if there were no link l, but
now, they cannot, because the target activities of links have to wait until the
link make its condition becoming true. Thus, only when B finishes and stores
true into link l, activity A can perform its execution because link l enables
its condition. Therefore, the behavior of this program is like B; A. Essentially
speaking , the flow activity in BPEL0 provides a kind of synchronization similar
to the shared variable.

Suppose l ∈ L, we make l a variable recording the status of the link l. The
value of l is from the three-values set {true, false, 3}, where 3 denotes that
the status of l is not determined. The following table shows the results of the
conjunction operator for the values of a link variable. Other boolean operators
are defined similarly.

∧ true false 3
true true false 3
false false false 3
3 3 3 3

Scope Activity with Compensation and Fault Handlers. The interesting
feature in BPEL0 (same as in BPEL) is its scope activity, which provides fault

254 G. Pu et al.

and compensation handlers, and both of them are important to support the
Long-Running Transactions. Similar to BPEL, the compensation mechanism in
BPEL0 is:

Scope-based (not activity-based). The compensation handlers can only be
attached to the scopes.

Fault triggered. A compensation handler can only be invoked directly or indi-
rectly by some fault handler, which is triggered by a fault in the execution.

Fully programmable. The compensation handlers are named. The installed
handlers can be invoked in any order, interweaved with any other activities.

{A ?C :F}n denotes a scope with the name n. A is its primary activity, while
C and F are its compensation handler and fault handler respectively. The ex-
ecution of a scope is the execution of its primary activity. The compensation
handler is installed with the same name as its scope when the primary activ-
ity completes its execution (terminates successfully). An installed compensation
handler n is invoked by activity �n, which can only appear in the fault handler
or compensation handler of the scope immediately enclosing the scope named
n. As mentioned earlier, we suppose that any fault can be caught by the fault
handler of the immediately enclosing scope.

Business Process. A complete program in BPEL0 is in the form of a busi-
ness process {|A : F |}, which is actually an outmost scope without name and
compensation handler. If A completes successfully, the whole business process
completes as well. While fault handler F terminates successfully when it catches
the fault occurring in A, the whole business is still regarded as completed. The
last case in which F terminates with a fault denotes that the whole business
process terminates abnormally.

The BPEL0 language provides almost all the features offered by BPEL except
the event handlers. We present the comparison for BPEL0and BPELin [18].

3 Semantics

This section formalizes the operational semantics of BPEL0. In the semantics,
the configuration is defined as a tuple:

〈A, σ, α, β〉 ∈ (Activity ∪ {�})× State× Compensation× Compensation

where Activity is the set of program texts consisted of BPEL0 activities or a
termination mark �, State is the set of functions from variables to values. As
variables are defined in scopes, we suppose each variable is qualified with the
scope name it belongs to. This means all variables are distinct in the state no
matter how the scopes are nested.

The compensation context set Compensation is the key to deal with the
scope-based compensational flow language. Contexts α, β ∈ Compensation are
sequences of compensation closures of the form (Cn :α1), where n is the same
name as the scope where the handler C is defined, and α1 is still a compensation
context. When handler C is invoked, it runs in company with the context α1.

Theoretical Foundations of Scope-Based Compensable Flow Language 255

There are two compensation contexts α and β in the configuration. As men-
tioned earlier, the compensation handler C in scope {P ?C :F}n is installed only
when P completes. We use α to record the accumulated compensation handlers
installed in the immediately enclosing scope before the current scope starts. We
call α static compensation context. On the other hand, β records the accumulated
compensation closures during the execution of P , which can be changed with
the execution of P . We denote β as the active compensation text. The following
example illustrates the difference between α and β.

{{P1 ?C1 :F1}n1 ;A;︸ ︷︷ ︸
α

{
β︷︸︸︷
P2 ?C2 :F2}n2 ; {P3 ?C3 :F3}n3 ?C :F}n

In this example, when P2 is executing, β records the compensation closures in-
stalled in the execution of P2, while α records the context for the scope n. When
the control enters scope n3, β will be reset empty and start to record the context
accumulated in the execution of P3 in scope n3.
〈ε, σ, α, 〈〉〉 is a terminated configuration. As a process might complete

(terminate successfully) or fail (terminate with a fault), we use 〈�, σ, α, 〈〉〉 to
denote the failure configuration.

We distinguish three kinds of events: visible event a, time elapsing event
√

,
and silent event τ . The visible event set mainly contains the events communi-
cating with the external environment. The time elapsing event denotes the time
elapses one time-unit in the real world. The silent event stands for a silent action
of the corresponding activity. We assume that when a fault occurs in program
P , the event η with fault transition belongs to {τ, a}, which leads to make the
control flow enter the fault handler from the primary activity. For simplicity, we
use symbol δ to stand for an activity in {τ, a,√}.

Because compensation text α is a sequence, we list some operators to deal
with sequences, which will be used later.

a0 · 〈a1, . . . , an〉 = 〈a0, a1, . . . , an〉 〈〉 ‖ 〈a0, a1, . . . , an〉 = 〈a0, a1, . . . , an〉
hd(〈a1, a2, . . . , an〉) = a1 tl(〈a1, a2, . . . , an〉) = 〈a2, . . . , an〉
〈a1, , . . . , an〉̂〈b1, . . . , bm〉 = 〈a1, . . . , an, b1, . . . , bm〉

The operator ‖ on sequence denotes two sequences are composed in parallel. If
one part of parallel sequence is empty, then this part can be omitted.

3.1 Basic Activities

The semantics of basic activities are listed as follows:

〈skip, σ, α, 〈〉〉 τ−→ 〈ε, σ, α, 〈〉〉
〈inv a x y, σ, α, 〈〉〉

√
−→ 〈inv a x y, σ, α, 〈〉〉

〈inv a x y, σ, α, 〈〉〉 a.v−→ 〈ε, σ[y 	→ v], α, 〈〉〉

〈rec a x, σ, α, 〈〉〉
√

−→ 〈rec a x, σ, α, 〈〉〉
〈rec a x, σ, α, 〈〉〉 a.v−→ 〈ε, σ[x 	→ v], α, 〈〉〉

〈rep a x, σ, α, 〈〉〉
√

−→ 〈rep a x, σ, α, 〈〉〉
〈rep a x, σ, α, 〈〉〉 τ−→ 〈ε, σ, α, 〈〉〉

256 G. Pu et al.

〈x̄ := ē, σ, α, 〈〉〉 τ−→ 〈ε, σ[x̄ 	→ σ(ē)], α, 〈〉〉

〈wait t, σ, α, 〈〉〉
√

−→ 〈wait t − 1, σ, α, 〈〉〉 t > 1

〈wait 1, σ, α, 〈〉〉
√

−→ 〈ε, σ, α, 〈〉〉
〈inv a x y, σ, α, 〈〉〉 a−→ 〈�, σ, α, 〈〉〉
〈rec a x y, σ, α, 〈〉〉 a−→ 〈�, σ, α, 〈〉〉
〈rep a x, σ, α, 〈〉〉 a−→ 〈�, σ, α, 〈〉〉

The last three rules for the basic activities show that, a fault might take place
when BPEL0 process communicates with the environment. Note that the basic
activities do not embed any scope. Therefore, the active compensation context
is empty for each of them.

3.2 Composition Activities

Sequence. Compared with the sequential composition in traditional programming
languages, one interesting rule here is that when a fault takes place in activity
A, the whole structure A;B goes into the fault state immediately, where the
active compensation text β is reset empty.

〈ε; A, σ, α, β 〉 τ−→ 〈A, σ, α, β 〉 〈A, σ, α, β〉 δ−→ 〈A′, σ′, α′, β′〉
〈A; B, σ, α, β 〉 δ−→ 〈A′; B, σ′, α′, β′〉

〈A, σ, α, β〉 η−→ 〈�, σ, α, 〈〉〉
〈A; B, σ, α, β 〉 η−→ 〈�, σ, α, 〈〉〉

For switch, iteration, external and internal choice, their transition rules can be
found in [18].

Link. Link structure provides the synchronization mechanism in parallel compo-
sition of BPEL0.

〈A, σ, α, β〉 δ−→ 〈A′, σ′, α′, β′〉
〈A ◦ {b1 � l̂1, b2 � l̂2}, σ, α, β〉 δ−→ 〈A′ ◦ {b1 � l̂1, b2 � l̂2}, σ′, α′, β′〉

〈ε ◦ {b1 � l̂1, b2 � l̂2}, σ, α, β〉 τ−→ 〈ε, σ[l1 	→ σ(b1), l2 	→ σ(b2)], α, 〈〉〉

〈A, σ, α, β〉 η−→ 〈�, σ′, α′, 〈〉〉
〈A ◦ {b1 � l̂1, b2 � l̂2}, σ, α, β〉 η−→ 〈�, σ[l1 	→ false, l2 	→ false], α, 〈〉〉

σ(b{ľ1, ľ2}) = true

〈b{ľ1, ľ2} ◦ A, σ, α, β〉 τ−→ 〈A, σ, α, β〉

σ(b{ľ1, ľ2}) = false

〈b{ľ1, ľ2} ◦ A, σ, α, β〉 τ−→ 〈�, σ, α, 〈〉〉

Note that when a fault occurs in source link structure A◦{b1!l̂1, b2!l̂2}, it enters
the fault state with assigning false to all its link variables. This mechanism en-
sures that the target link structure can work well, even though its corresponding
source link structure has a fault. If the valuation of the boolean variable in the
target link is false, a standard fault will be thrown immediately. This rule reflects
the non dead-path-elimination semantics in the flow structure of the BPEL.

Theoretical Foundations of Scope-Based Compensable Flow Language 257

Scope. Scope activity is one of the most important features in BPEL0. By means
of the compensation and fault handlers with the scope activity, BPEL0 can deal
with very complicated long running transactions in business process.

〈A, σ, β, γ〉 δ−→ 〈A′, σ′, β′, γ′〉
〈{A ? C :F}n, σ, α, β〉 δ−→ 〈{A′ ? C :F}n, σ′, α, β′〉

〈{ε ? C :F}n, σ, α, β〉 τ−→ 〈ε, σ, (Cn :β) · α, 〈〉〉

〈A, σ, β, γ〉 η−→ 〈�, σ, β, γ′〉
〈{A ? C :F}n, σ, α, β〉 η−→ 〈F, σ, β, 〈〉〉

The relation between static and active compensation contexts embodied in scope
activity is that the active compensation context of {A ?C : F}n is exactly the
static compensation context of activity A.

The primary activity A is executed with an empty context initially. When
it completes, a compensation closure is created, and put in the front of α. A
sequence of compensation closures will accumulate in this way. When primary
activity A fails, the execution switches to the fault handler, and the termination
status of the fault handler F is the termination status of the scope. The fault
handler can do anything to the state and the environment. Basically, it has the
responsibility to recover the process back to a normal state. Note that the fault
handler resets its active compensation context empty again before it starts its
computing task.

Business Process. A business process is just like the scope activity except lacking
of compensation handler. As business process can be regarded as the outmost
scope activity, its static compensation text always keeps empty. The following
rules are similar to those of scope activity.

〈P, σ, β, γ 〉 δ−→ 〈 P ′, σ′, β′, γ′ 〉
〈 {|P : F |}, σ, 〈〉, β 〉 δ−→ 〈 {|P ′ : F |}, σ′, 〈〉, β′ 〉

〈 {|ε : F |}, σ, 〈〉, β 〉 τ−→ 〈 ε, σ′, 〈〉, 〈〉 〉

〈 P, σ, β, γ 〉 η−→ 〈 �, σ, β, γ′ 〉
〈 {|P : F |}, σ, 〈〉, β 〉 η−→ 〈 F, σ, β, 〈〉 〉

Flow (Parallel). The activities in flow structure are synchronized by the link set
defined within parallel activity. The flow activity obeys the following rules:

〈 A, σ, αA, βA 〉 δ−→ 〈 A′, σ′, α′
A, β′

A 〉 and δ
= √

〈 A ‖L B, σ, (αA ‖ αB) · α, βA ‖ βB 〉 δ−→ 〈 A′ ‖L B, σ′, (α′
A ‖ αB) · α, β′

A ‖ βB 〉

〈 B, σ, αB , βB 〉 δ−→ 〈 B′, σ′, α′
B , β′

B 〉 and δ
= √

〈 A ‖L B, σ, (αA ‖ αB) · α, βA ‖ βB 〉 δ−→ 〈 A ‖L B′, σ′, (αA ‖ α′
B) · α, βA ‖ β′

B 〉

〈 A, σ, αA, βA 〉
√

−→〈 A′, σ′, α′
A, β′

A 〉 and 〈 B, σ, αB , βB 〉
√

−→〈 B′, σ′, α′
B , β′

B 〉

〈 A ‖L B, σ, (αA ‖ αB) · α, βA ‖ βB 〉
√

−→ 〈 A′ ‖L B′, σ′, (α′
A ‖ α′

B) · α, β′
A ‖ β′

B 〉

258 G. Pu et al.

The operator ‖ on ε and � is defined in the following table:

‖ ε �
ε ε �
� � �

Only when all of activities in the flow complete, the flow activity completes. Note
that there is an interesting thing about a fault occurring in one branch of the
flow activity. If one branch in a flow fails, the other branches can still run until
they complete or fail. This seems a little unreasonable in real system, because
all branches are supposed to be terminated when one of the branch in flow fails.
In the next section, the concept of forced termination is introduced to modify
the semantics provided here in order to conform to the behavior of fault in the
real system.

Operation � n looks up the compensation closure with the name n in the
current compensation context. If no closure with the name is found, it acts
like skip, otherwise, the handler in the closure is executed in company with its
context:

〈 �n, σ, α, 〈〉 〉 τ−→ 〈 gp(n,α), σ, ge(n,α), 〈〉 〉

The lookup rules for parallel operator are as follows:

gp(n, (α′ ‖ α′′) · α) = gp(n, α′̂α′′̂α) and ge(n, (α′ ‖ α′′) · α) = ge(n, α′̂α′′̂α)

where gp(n, α) and ge(n, α) extract the process and the context of the compen-
sation closure with name n from α, respectively (where n �= m):

gp(n, 〈〉) = skip ge(n, 〈〉) = 〈〉
gp(n, (Cn :β) · α′) = C ge(n, (Cn :β) · α′) = β
gp(n, (Cm :β) · α′) = gp(n, α′) ge(n, (Cm :β) · α′) = ge(n, α′)

3.3 Forced Termination

In a BPEL flow activity, when one branch fails, the fault handler of the innermost
enclosing scope begins its behavior by implicitly terminating all other (concur-
rent) activities in the scope, and then starts the execution of its body. This is
called the forced termination. To deal with this mechanism, a new termination
mark � is introduced to describe this new kind of termination.

We have to add some rules to handle the forced termination. First of all, all
basic actives will be allowed to complete their work as before and their comple-
tion can be regarded as a forced termination as well. We use Pba to denote any
basic activity, such as rec, inv etc.

〈Pba, σ, α, 〈〉〉 δ−→ 〈ε, σ′, α, 〈〉〉
〈Pba, σ, α, 〈〉〉 δ−→ 〈�, σ′, α, 〈〉〉

A rule for sequential composition is added:
〈A, σ, α, β〉 δ−→ 〈�, σ′, α, 〈〉〉

〈A; B, σ, α, β 〉 δ−→ 〈�, σ′, α, 〈〉〉

Theoretical Foundations of Scope-Based Compensable Flow Language 259

A rule for link construct is added:

〈A, σ, α, β〉 δ−→ 〈�, σ′, α, 〈〉〉
〈A ◦ {b1 � l̂1, b2 � l̂2}, σ, α, β〉 δ−→ 〈�, σ′[l1 	→ false, l2 	→ false], α, 〈〉〉

A new rule for scope is added as well.
〈P, σ, β, γ〉 δ−→ 〈�, σ′, β, 〈〉〉

〈{P ? C :F}n, σ, α, β〉 δ−→ 〈�, σ′, α, 〈〉〉

At last, we should modify the results of operator ‖ while � is added

‖ ε � �
ε ε � �
� � � �
� � � �

Example 1. (Forced Termination) Consider a BPEL0 program P = {{A1 ?C1 :
F1}n1 ;A2;A3 ‖{} A4;A5;A6 ? skip : � n}n, where Ai (i = 1...6) are all basic
activities. Suppose a fault occurs in the execution of A2, and all the other basic
activities can complete. Using the semantic rules above, we can reason about the
execution of P . For simplicity, we use some abbreviations P1 = {A1 ?C1 :F1}n1 ,
P11 = {A1 ?C1 : F1}n1 ;A2;A3 and P12 = A4;A5;A6. In the following , we use
−→∗ to denote zero or multiple transitions.

When there is no forced termination:
(1) 〈P1, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′, (Cn :〈〉), 〈〉〉
(2) 〈P11, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn :〈〉), 〈〉〉
(3) 〈P12, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′′, 〈〉, 〈〉〉
(4) 〈P11 ‖{} P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn :〈〉), 〈〉〉
(5) 〈P, σ, 〈〉, 〈〉〉 −→∗ 〈�n, σ′′, (Cn :〈〉), 〈〉〉
(6) 〈P, σ, 〈〉, 〈〉〉 −→∗ 〈Cn, σ′′, 〈〉, 〈〉〉

Now we take the forced termination into account:
(1) 〈P1, σ, 〈〉, 〈〉〉 −→∗ 〈ε, σ′, (Cn :〈〉), 〈〉〉
(2) 〈P11, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn :〈〉), 〈〉〉
(3) 〈P12, σ, 〈〉, 〈〉〉 −→ 〈ε; A2; A3, σ1, 〈〉, 〈〉〉
(4) 〈P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ1, 〈〉, 〈〉〉
(5) 〈P11 ‖{} P12, σ, 〈〉, 〈〉〉 −→∗ 〈�, σ′′, (Cn :〈〉), 〈〉〉

From the second deduction, we can see that when a branch in a parallel process
fails, the other activities that are currently active are forced to terminate by
means of force termination rules.

4 Bisimulation

The behavior of a program can be represented in terms of execution steps. Two
syntactically different programs may have the same observable behavior. Thus,
a reasonable abstraction is desirable in defining program equivalence via opera-
tional semantics. Bisimulation is a useful approach in defining program equiva-
lence. Algebraic laws can be explored using the formalized bisimulation.

260 G. Pu et al.

Here are some auxiliary definitions for the definition of bisimulation.

Definition 1. The transition relation id=⇒ is defined as:

〈P, σ, α, β〉 id=⇒ 〈P ′, σ, α, β〉
=df ∃n, P1, . . . , Pn • 〈P, σ, α, β〉

η1−→ 〈P1, σ, α, β〉 . . .
ηn−→ 〈Pn, σ, α, β〉

and Pn = P ′

where
ηi−→ can be of the form τ−→ or a−→. ,$

Definition 2. The transition relation δ=⇒ (δ ∈ {τ, a,√}) is defined as:

〈P, σ, α, β〉 δ=⇒ 〈P ′, σ′, α′, β′〉

=df

{
〈P, σ, α, β〉 δ−→ 〈P ′, σ′, α′, β′〉 or

∃P1 • 〈P, σ, α, β〉 id=⇒ 〈P1, σ, α, β〉 δ−→ 〈P ′, σ′, α′, β′〉

In a BPEL0 program configuration, the third element stores a sequence of pro-
grams. This gives the complexity of defining bisimulation for the programs. In or-
der to deal with the definition, we firstly introduce the concept of 0-Bisimulation,
which forms the basis for defining program equivalence.

Definition 3. (0-Bisimulation) A symmetric relation R is a 0-Bisimulation if
and only if ∀ 〈P, σ, α, β〉R 〈Q, σ, α1, β1〉

(1) if 〈P, σ, α, β〉
√

=⇒ 〈P ′, σ′, α′, β′〉,
then ∃Q′, α′

1, β
′
1 • 〈Q, σ, α1, β1〉

√
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉

(2) if 〈P, σ, α, β〉 η
=⇒ 〈P ′, σ′, α′, β′〉 (η ∈ {τ, a}),

(2-1) if σ �= σ′, then

∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉

(2-2) if σ = σ′, then
either 〈P ′, σ′, α′, β′〉R 〈Q, σ, α1, β1〉
or ∃Q′, α′

1, β
′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉

(3) if 〈P, σ, α, β〉 η−→ 〈�, σ′, α′, 〈〉〉 (η ∈ {τ, a}),
then ∃α′

1 • 〈Q, σ, α, β〉 η−→ 〈�, σ′, α′
1, 〈〉〉 �

Item (1) indicates that if process P makes time transition, so does the process
Q and the two result configurations are also 0-bisimilar.

Item (2) stands for the case of atomic-like transitions. It can be divided into
two types. If the two states before and after the transition are different, the
bisimilarity analysis is similar to item (1). The second type models the case
that the two states are the same. For this sub case, although process P has
made transitions, process Q may not make further transitions and the result

Theoretical Foundations of Scope-Based Compensable Flow Language 261

configuration of P is directly bisimilar to the configuration of process Q. On the
other hand, process Q may also need to do atomic-like transition and the result
configurations of process P and Q after transitions are bisimilar.

Item (3) represents the failure case. If a process makes a failure transition,
the corresponding process must also make a failure transition.

Definition 4. (1)Configurations 〈P1, σ, α1, β1〉and 〈P2, σ, α2, β2〉are0-bisimilar,
written as 〈P1, σ, α1, β1〉 ≈0 〈P2, σ, α2, β2〉, if there exists a 0-bisimulation relation
R such that 〈P1, σ, α1, β1〉 R 〈P2, σ, α2, β2〉.
(2) Programs P and Q are 0-bisimilar, written as P ≈0 Q, if ∀σ, α1, α2, β1, β2 •
〈P, σ, α1, β1〉 ≈0 〈Q, σ, α2, β2〉. ,$

This definition indicates that ≈0 is the largest relation for 0-bisimulation over
configurations. Further, the concept of 0-bisimulation has also been extended to
the domain of processes.
Now we give the definition of the simple compensation sequence:

(1) 〈 〉 is a simple compensation sequence;
(2) (C1 : α1)̂ . . . ̂(Cn : αn) is a simple compensation sequence if α1, . . . , αn

are also simple compensation sequences.

Example 2. Let α = (C1 : α1)̂(C2 : α2)̂(C3 : 〈 〉),
α1 = (C4 : α4)̂(C5 : 〈 〉) and α2 = (C6 : α6)̂(C7 : 〈 〉)̂(C8 : α8),
α4 = (C9 : 〈 〉)̂(C10 : 〈 〉),
α6 = (C11 : 〈 〉)̂(C12 : 〈 〉)̂(C13 : 〈 〉) and α8 = (C14 : 〈 〉)̂(C15 : 〈 〉)

From the above definition, we know α is a simple compensation sequence. ,$

Consider a simple compensation sequence α = (C1 : α1)̂ . . . ̂(Cn : αn). In
order to describe its full structure, we translate the nested sequence structure of
α into a tree structure; namely tree(α):

(1) if α = 〈 〉, then tree(α) is just one node;
(2) if α = (C1 : α1)̂ . . . ̂(Cn : αn), then there are n branches for the root of the

tree, the names for the n edges from left to right are C1, , Cn. Further,
the root of tree(αi) is just another node of edge Ci.

The tree structure of α in Example 2 is shown in the left tree below. It clearly
illustrates the structure of the compensation sequence. Regarding the tree for

C1
C2

C3

C4 C5 C6
C7

C8

C9 C10 C11

C12

C13 C14 C15

1
2

3

1 2
1 2 3

1 2
1

2
3 1 2

a simple compensation sequence, we now assign a number for each edge (called
edge number). For a given edge, consider all the edges starting from the upper

262 G. Pu et al.

point of the given edge. The edge number for a given edge is i if the given edge
is the i-th edge starting from left to right. The edge number for each edge in
Example 2 is shown in the right tree above.

The path(α) for any simple compensation sequence β is defined as:

path(α) =df { i1̂ . . . ̂in | ∃ edge C • i1, . . . , in are the edge number
from the root of tree(α) to the exact edge C}

The sequence i1̂ . . . ̂in dynamically indices to the exact edge in tree(α). There-
fore, we will use α[i1̂ . . . ̂in] to represent the corresponding edge in tree(α),
which stands for a program. For example, in the simple compensation sequence
α of Example 2, 2̂1̂2 will identify program C12.

Two sequences α1 and α2 are called structural equivalence, written as α1 ≈s

α2, if path(α1) = path(α2).
However, not all compensation sequences are simple. For example, let α =

((C1 : 〈 〉) ‖ (C2 : (C3 : 〈 〉)))̂(C4 : 〈 〉). It is easy to see that α is not simple.

To illustrate the further structure for compensation, we introduce a function
mul(α), which contains all the simple compensation sequences for compensation
sequence α:

mul(〈 〉) =df {〈 〉}
mul((C1 : α1)̂x) =df {(C1 : u)̂t | u ∈ mul(α1) ∧ t ∈ mul(x)}
mul((x ‖ y)̂z) =df mul(x̂ŷz) ∪mul(ŷx̂z)

Now we introduce the concept of k-bisimulation (k ≥ 1). Together with 0-
bisimulation, they form the basis in defining program equivalence.

Definition 5. (k-Bisimulation) A symmetric relation R is a k-Bisimulation
(k ≥ 1) if and only if for any 〈P, σ, α, β〉R 〈Q, σ, α1, β1〉

(0) Equiv(α, α1, k − 1);

(1) if 〈P, σ, α, β〉
√

=⇒ 〈P ′, σ′, α′, β′〉,

then ∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

√
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉 and

Equiv(α′, α′
1, k − 1);

(2) if 〈P, σ, α, β〉 η
=⇒ 〈P ′, σ′, α′, β′〉 (η ∈ {τ, a}),

(2-1) if σ �= σ′, then

∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉 and

Equiv(α′, α′
1, k − 1);

(2-2) if σ = σ′, then
either 〈P ′, σ′, α′, β′〉R 〈Q, σ, α1, β1〉 and Equiv(α′, α1, k − 1);

or ∃Q′, α′
1, β

′
1 • 〈Q, σ, α1, β1〉

η
=⇒ 〈Q′, σ′, α′

1, β
′
1〉 and

〈P ′, σ′, α′, β′〉R 〈Q′, σ′, α′
1, β

′
1〉 and

Equiv(α′, α′
1, k − 1);

Theoretical Foundations of Scope-Based Compensable Flow Language 263

(3) if 〈P, σ, α, β〉 η−→ 〈�, σ′, α′, 〈〉〉 (η ∈ {τ, a}),
then ∃α′

1 • 〈Q, σ, α, β〉 η−→ 〈�, σ′, α′
1, 〈〉〉 and Equiv(α′, α′

1, k − 1);

where
(a) Equiv(α1, α2, n) =df ∀u ∈ mul(α1) • ∃v ∈ mul(α2) • equiv(u, v, n) ∧

∀v ∈ mul(α2) • ∃u ∈ mul(α1) • equiv(v, u, n)
(b) equiv(u, v, n) =df u ≈s v ∧ ∀t ∈ path(u) • u[t] ≈n v[t] ,$

Here, equiv(u, v, n) indicates that the two simple compensation sequences u and
v are structural equivalent (described by u ≈s v). Further, it also indicates that
every program in tree(u) is n-bisimilar to the corresponding program in tree(v).

Regarding Equiv(α1, α2, n), α1 and α2 may not be simple compensation se-
quences. We use mul(α1) and mul(α2) to record all the simple compensation
sequences generated from α1 and α2 respectively. Further, for every simple
compensation sequence u in mul(α1), there should exist a simple compensa-
tion sequence v in mul(α2) such that equiv(u, v, n) is satisfied and vice-versa.
Therefore, Equiv(α1, α2, n) stands for the n-bisimilarity for α1 and α2.

The key point of k-bisimulation (k ≥ 1) is as follows. As mentioned earlier,
the third element of a configuration is a sequence recording a set of programs
in tree structure. In k-bisimulation (k ≥ 1), for the sequences appearing as the
third elements in the two bisimilar configurations before and after the transi-
tion, their structures should be the same. Further, before a transition (or after
a transition), the corresponding processes recorded in the two sequences of two
k-bisimilar configurations should be (k − 1)-bisimilar. This shows the differ-
ence of k-bisimulation and 0-bisimulation, which is shown in item (0) and the
extra information (i.e., function Equiv()) in other items in the definition of
k-bisimulation.

Definition 6. (1)Configurations 〈P1, σ, α1, β1〉and 〈P2, σ, α2, β2〉arek-bisimilar
(k ≥ 1), written as 〈P1, σ, α1, β1〉 ≈k 〈P2, σ, α2, β2〉, if there exists a k-bisimulation
relation R such that 〈P1, σ, α1, β1〉 R 〈P2, σ, α2, β2〉.
(2) Programs P and Q are k-bisimilar (k ≥ 1), the fact is written as P ≈k Q, if
∀σ, α1, α2, β1, β2 • Equiv(α1, α2, k − 1) =⇒ 〈P, σ, α1, β1〉 ≈k 〈Q, σ, α2, β2〉 ,$

From definition 5 and 6, k-bisimulation relies on (k − 1)-bisimulation. Thus,
0-bisimulation is the basis for the definition of all k-bisimulations (for k ≥ 1).
Therefore, n-bisimulation (n ≥ 0) forms a hierarchy structure.

Lemma 1. If P ≈k Q, then P ≈k−1 Q (k ≥ 1). ,$

Definition 7. (Program equivalence) ≈=df

⋂
n≥0 ≈n ,$

Two programs are equivalent, if they are n-bisimilar for any n (n ≥ 0).

Theorem 1. ≈ is a congruence. ,$

This theorem indicates that “program equivalence” relation ≈ is preserved by
all BPEL0 processes.

264 G. Pu et al.

5 Related Work

In recent years, many efforts have been attempted to formalize various workflow
languages [1, 3, 6, 5], especially with some kinds of compensation concepts, which
root to the Sagas and open nested transactions, and have been studied for a long
time in the transaction processing world.

M. Mazzara et al. suggested to merge the fault and compensation handling
into a general framework of even handling [14], and presented an operational
semantics for their CCS-like language. In paper [12], Koshkina et al. analyzed
the link structure carefully in BPEL, and presented a language called BPEL-
calculus (a CCS-like language as well) to model and verify BPEL specifica-
tions. But they omitted the compensation and fault handling mechanisms
totally.

In a recent paper [7], Bruni et al. presented the operational semantics for a
series of languages, embodying the concept of compensation. However, the com-
pensation in these languages is basic-activity-oriented (each basic activity is in
company with a compensation) with no name. The compensation is triggered
by a special command, and always executed in the reverse order with respect
to the installation. Compared to the work of paper [6], Butler et al. presented a
language called StAC (Structured Activity Compensation), where the semantics
of StAC was defined on its semantic language. The paper [8] illustrated the link
and difference between the two languages proposed by Bruni [7] and Butler [6]
respectively. Our previous work [16] studied the semantics of the fault and com-
pensation handling in BPEL specification, and presented a simple language to
catch the features of BPEL related to fault and compensation handling. The big
step semantics are adopted by most researchers when studying the compensation
mechanism in workflow language.

Some research groups aim to model and verify the BPEL4WS program, such
as [10, 3]. In paper [10], authors presented a set of tools and techniques for
analyzing interactions of composite web services which are specified in BPEL.
The BPEL specifications are translated into an intermediate representation, and
then verified using SPIN. In paper [17], we adopted a similar approach to use
model checker UPPAAL [4] to verify the properties of BPEL program including
timed properties. But we find no work on verifying BPEL specification with the
features of the compensation and fault handling.

Of course there are much more informal work on workflow languages, and
especially on BPEL. For example, [1] proposed a general framework to evaluate
the capabilities and limitations of BPEL. Paper [2] presented an informal analysis
from a pattern-based view on workflow language. But their work did not provide
the patterns related to fault and compensation handling as well.

6 Conclusion

BPEL is one of the most important business process modelling languages, aimed
to specify the business services which are formed by distributed, interoperational

Theoretical Foundations of Scope-Based Compensable Flow Language 265

and heterogeneous components over networks. One distinct feature of BPEL is
its scope-based compensation handling and fully programmable compensation
mechanism, which allows users to specify the compensation behaviors of pro-
cesses in application-specific manners.

In this paper, we proposed a language BPEL0 based on BPEL, and regard
it as a foundation to study the scoped-base compensation languages. With the
help of the key concepts of compensation closure and compensation context, the
semantics of BPEL0 has been carefully studied. Based on the semantics, the
concept of bisimulation in hierarchy structure has been studied , which can be
used to define the equivalence between BPEL0 programs

Based on this work, an execution engine of BPEL0 is being developed, and we
also hope to study the verification of BPEL0 relying on the semantic framework
proposed here, which can be added into the developing of execution engine.
As one future work as well, we will consider the design patterns provided by
BPEL0, especially the patterns with compensation handling by means of our
defined bisimulation relation.

References

1. W. Aalst, M. Dumas, and A. Hofstede, and P. Wohed, Analysis of web services
composition languages: The case of BPEL4WS. In Proc. of ER’03, LNCS 2813, pp
200-215, Springer, 2003.

2. W. Aalst, A. Hofstede. YAWL: yet another workflow language. In Inf. Syst.,
Vol.30(4), pp 245-275, 2005.

3. B. Benatallah and R. Hamadi. A Petri net-based model for web service composition.
Proc. of ADC’03, pp 191-200, Australian Computer Society, 2003.

4. J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL -
a tool suite for automatic verification of real-time systems. In Hybrid Systems III:
Verification and Control, pp 232-243, Springer, 1996.

5. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web services chore-
ographies. In Pro. of WS-FM’04, 2004.

6. M. Butler and C. Ferreira. An operational semantics for StAC, a language for mod-
elling long-running business transactions. In Proc. of Coordination’04, LNCS 2949,
pp 87-104, Springer, 2004.

7. R. Bruni, H. Melgratti, and U. Montanari, Theoritical Foundations for Compen-
sation in Flow Composition Languages, In Proc. of ACM POPL’05, 2005.

8. R. Bruni, M. Butler, C. Ferreira, C. A. R. Hoare, H. C. Melgratti, U. Monta-
nari. Comparing Two Approaches to Compensable Flow Composition. In Proc. of
CONCUR’05, pp 383-397, 2005.

9. BPEL4WS, Business Process Execution Language for Web Service. http://www.
siebel.com/bpel, 2003.

10. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc.
of WWW’04, pp 621-630, 2004.

11. H. Garcia-Molina and K. Salem. Sagas. In Proc. of ACM SIGMOD’87, pp 249-259,
ACM Press, 1987.

12. M. Koshkina and F. Breugel. Modelling and verifying web service orchestration
by means of the concurrency workbench. In ACM SIGSOFT Software Engineering
Notes, 29(5), 2004.

266 G. Pu et al.

13. F. Leymann. WSFL: Web Serices Flow Languag. http://www-3.ibm.com/
software/solutions/webservices/pdf/WSDL.pdf.

14. M. Mazzara and R. Lucchi. A framework for generic error handling in business
process. In Proc. of WS-FM’04, ENTCS Vol. 105, pp 133-145, Elsevier, 2004.

15. J. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, Dept. of Electrical Eng. and Computer Sci., MIT, 1981.

16. Qiu Zongyan, Wang Shuling, Pu Geguang and Zhao Xiangpeng. Semantics of
BPEL4WS-like Fault and Compensation Handling . In Proc. of Formal Methods’05,
pp 350-365, Springer, 2005.

17. Pu Geguang, Zhao Xiangpeng, Wang Shuling, and Qiu Zongyan. Towards the
semantics and verification of BPEL4WS. In Proc. of WS-FM05, 2005.

18. Pu Geguang, Zhu Huibiao, Qiu Zongyan, Wang Shuling, Zhao Xiangpeng, and
He Jifeng. Theoretical Foundations of Scope-based Compensation Flow Language
for Web Service. Research Report 67, School of Mathematical Sciences, Peking
University, 2005.

19. S. Thatte. XLANG: Web Service for Business Process Design. http://www.
gotdotnet.com/team/xml wsspecs/xlang-c/default.html.

Author Index

Ábrahám, Erika 218

Barrio-Solórzano, Manuel 93
Bartoletti, Massimo 1
Bézivin, Jean 171

Canal, Carlos 63
Chieh Yu, Ingrid 202
Choi, Heeseok 20
Choi, Youhee 20
Cuesta, Carlos E. 93

de la Fuente, Pablo 93
del Pilar Romay, Maŕıa 93
Degano, Pierpaolo 1

Ehrig, Karsten 156

Ferrari, Gian Luigi 1
Fiadeiro, José Luiz 17

Garoche, Pierre-Löıc 78
Graf, Susanne 48
Grüner, Andreas 218
Guidi, Claudio 234

He, Jifeng 252

Johnsen, Einar Broch 202
Jouault, Frédéric 171

Kastenberg, Harmen 186
Kleppe, Anneke 186
Küster, Jochen M. 156

Lanotte, Ruggero 108
Lesens, David 48
Lucchi, Roberto 234

Maggiolo-Schettini, Andrea 108
Milazzo, Paolo 108
Moon, Mikyeong 20
Mota, Alexandre 123

Ober, Iulian 48
Owe, Olaf 202

Pantel, Marc 78
Poizat, Pascal 33, 63
Pu, Geguang 252

Qiu, Zongyan 252

Ramos, Rodrigo 123
Refsdal Atle 138
Rensink, Arend 186
Royer, Jean-Claude 33
Runde, Ragnhild Kobro 138

Salaün, Gwen 33, 63
Sampaio, Augusto 123
Sangiorgi, Davide 18
Steffen, Martin 218
Stølen, Ketil 138

Taentzer, Gabriele 156
Thirioux, Xavier 78
Troina, Angelo 108

Wang, Shuling 252
Winkelmann, Jessica 156

Yeom, Keunhyuk 20

Zhao, Xiangpeng 252
Zhu, Huibiao 252

	Frontmatter
	Invited Speakers
	Security Issues in Service Composition
	Separating Distribution from Coordination and Computation as Architectural Dimensions
	The Bisimulation Proof Method: Enhancements and Open Problems

	Regular Papers
	An Approach to Quality Achievement at the Architectural Level: AQUA
	Bounded Analysis and Decomposition for Behavioural Descriptions of Components
	Modeling and Validation of a Software Architecture for the Ariane-5 Launcher
	Synchronizing Behavioural Mismatch in Software Composition
	Static Safety for an Actor Dedicated Process Calculus by Abstract Interpretation
	Temporal Superimposition of Aspects for Dynamic Software Architecture
	Modeling Long--Running Transactions with Communicating Hierarchical Timed Automata
	Transformation Laws for UML-RT
	Underspecification, Inherent Nondeterminism and Probability in Sequence Diagrams
	Generating Instance Models from Meta Models
	KM3: A DSL for Metamodel Specification
	Defining Object-Oriented Execution Semantics Using Graph Transformations
	Type-Safe Runtime Class Upgrades in Creol
	Abstract Interface Behavior of Object-Oriented Languages with Monitors
	Mobility Mechanisms in Service Oriented Computing
	Theoretical Foundations of Scope-Based Compensable Flow Language for Web Service

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

